GENERATION OF RADICALS IN FERROUS-PERSULFATE SYSTEM USING KRCL EXCILAMP
Abstract
Generation of sulfate radical anion (SО4•–) and hydroxyl radical (•OH) in the ferrous-persulfate system (UV/PS/Fe2+), activated with KrCl excilamp (222 nm) radiation, was studied. To detect radicals and evaluate levels of their action, degradation experiments were conducted using the probe compounds, which trap the target radicals – terephtalic acid (TPA) and p-chlorobenzoic acid (pCBA). Deionized water (DW), natural water (NW) and wastewater (WW), containing a probe compound, were sequentially treated by direct UV, UV/PS and UV/PS/Fe2+ systems. The ferrous-persulfate system was shown to be the most efficient in terms of radical generation within the same water matrix: UV/PS/Fe2+ > UV/PS > UV. Comparing different water matrices, the lowest radical generation was observed in WW. Since TPA and pCBA were unsuitable compounds to assess the contributions of SО4•– and •OH by comparison of degradation degree with and without methanol and tert-buthanol, herbicide atrazine (ATZ) was taken as a model organic pollutant with comparable reaction rate constants with SО4•– and •OH. Scavenging experiments with ATZ and alcohols showed a major contribution of SO4•– during UV/PS/Fe2+ treatment of DW (79%) and NW (60%), whereas SO4•– and •OH contributed equally in WW. Direct UV irradiation (without persulfate and Fe2+) indicated the •OH production in WW, presumably, due to high photoreactivity of dissolved organic substance (DOM).
References
Grčić I., Vujević D., Koprivanac N. Modeling the mineralization and discoloration in colored systems by (US)Fe2+/H2O2/S2O82- pro-cesses: A proposed degradation pathway. Chem. Eng. J. 2010. V. 157. P. 35-44. DOI: 10.1016/j.cej.2009.10.042.
Oh W.-D., Dong Z., Lim T.-T. Generation of sulfate radi-cal through heterogeneous catalysis for organic contami-nants removal: Current development, challenges and pro-spects. Appl. Catal. B–Environ. 2016. V. 194. P. 169-201. DOI: 10.1016/j.apcatb.2016.04.003.
Anipsitakis G.P., Dionysiou D.D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 2004. V. 38. N 13. P. 3705-3712. DOI: 10.1021/es035121o.
Saien J., Osali M., Soleymani A.R. UV/persulfate and UV/hydrogen peroxide processes for the treatment of sali-cylic acid: effect of operating parameters, kinetic, and en-ergy consumption. Desal. Water Treat. 2015. V. 56. N 11. P. 3087-3095. DOI: 10.1080/19443994.2014.963156.
Zhang Q., Chen J., Dai C., Zhang Y., Zhou X. Degrada-tion of carbamazepine and toxicity evaluation using the UV/persulfate process in aqueous solution. J. Chem. Technol. Biotechnol. 2015. V. 90. P. 701-708. DOI: 10.1002/jctb.4360.
Michael-Kordatou I., Iacovou M., Frontistis Z., Hapeshi E., Dionysiou D.D., Fatta-Kassinos D. Erythromycin oxi-dation and ERY-resistant Escherichia coli inactivation in urban wastewater by sulfate radical-based oxidation pro-cess under UV-C irradiation. Water Res. 2015. V. 85. P. 346-358. DOI: 10.1016/j.watres.2015.08.050.
Lomaev M.I., Sosnin E.A. Excilamps and their applica-tions. Chem. Eng. Technol. 2016. V. 39. N 1. P. 39-50. DOI: 10.1002/ceat.201500229.
Matafonova G., Batoev V.B. Recent advances in applica-tion of UV light-emitting diodes for degrading organic pol-lutants in water through advanced oxidation processes: A review. Water Res. 2018. V. 132. P. 177-189. DOI: 10.1016/j.watres.2017.12.079.
Buxton G.V., Greenstock C.L., Helman W.P., Ross A.B. Critical review of rate constants for reactions of hydrated electrones, hydrogen atoms and hydroxyl radicals (•OH/•O-) in aqueous solution. J. Phys. Chem. Ref. Data. 1988. V. 17. P. 513-886. DOI: 10.1063/1.555805.
Neta P., Madhavan V., Zemel H., Fessenden R.W. Rate constants and mechanism of reaction of sulfate radical an-ion with aromatic compounds. J. Am. Chem. Soc. 1977. V. 99. P. 163-164. DOI: 10.1021/ja00443a030.
Page S.E., Arnold W.A., McNeill K. Terephthalate as a probe for photochemically generated hydroxyl radical. J. Environ. Monit. 2010. V. 12. P. 1658-1665. DOI: 10.1039/c0em00160k.
Neta P., Huie R.E., Ross A.B. Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data. 1988. V. 17. P. 1027-1284. DOI: 10.1063/1.555808.
Rosario-Ortiz F.L., Canonica S. Probe compounds to assess the photochemical activity of dissolved organic matter. Environ. Sci. Technol. 2016. V. 50. N 23. P. 12532-12547. DOI: 10.1021/acs.est.6b02776.
Larson R.A., Zepp R.G. Reactivity of the carbonate radi-cal with aniline derivatives. Environ. Toxicol. Chem. 1988. V. 7. P. 265-274. DOI: 10.1002/etc.5620070403.
Lutze H.V., Bircher S., Rapp I., Kerlin N., Bakkour R., Geisler M., von Sonntag C., Schmidt T.C. Degradation of chlorotriazine pesticides by sulfate radicals and the influ-ence of organic matter. Environ. Sci. Technol. 2015. V. 49. P. 1673-1680. DOI: 10.1021/es503496u.
Lutze H.V., Kerlin N., Schmidt T.C. Sulfate radical-based water treatment in presence of chloride: formation of chlo-rate, inter-conversion of sulfate radicals into hydroxyl rad-icals and influence of bicarbonate. Water Res. 2015. V. 72. P. 349-360. DOI: 10.1016/j.watres.2014.10.006.
Wacławek S., Lutze H.V., Grübel K., Padil V.V.T., Černík M., Dionysiou D.D. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 2017. V. 330. P. 44-62. DOI: 10.1016/j.cej.2017.07.132.
Li S., Hu J. Transformation products formation of ciprof-loxacin in UVA/LED and UVA/LED/TiO2 systems: Impact of natural organic matter. Water Res. 2018. V. 132. P. 320-330. DOI: 10.1016/j.watres.2017.12.065.
Bu L., Shi Z., Zhou S. Modeling of Fe(II)-activated persul-fate oxidation using atrazine as a target contaminant. Sep. Purif. Technol. 2016. V. 169. P. 59-65. DOI: 10.1016/j.seppur.2016.05.037.
Azenha M.E.D.G., Burrows H.D., Canle L.M., Coimbra R., Fernández M.I., García M.V., Rodrigues A.E., San-taballa J.A., Steenken S. On the kinetics and energetics of one-electron oxidation of 1,3,5-triazines. Chem. Commun. 2003. V. 9. P. 112-113. DOI: 10.1039/b210119j.