INTERACTION OF NATURAL AND SYNTHETIC POLYELECTROLYTES WITH BOVINE SERUM ALBUMIN

  • Natalya N. Smirnova Vladimir State University named after A.G. and N.G. Stoletovs
  • Kirill V. Smirnov Vladimir State University named after A.G. and N.G. Stoletovs
Keywords: natural and synthetic polyelectrolytes, bovine serum albumin, interpolyelectrolyte reactions

Abstract

Interaction of a number of natural and synthetic polyelectrolytes (PE): chitosan, poly‒N,N‒dimethyl‒N,N‒diallylammonium chloride, sodium carboxymethylcellulose and aromatic copolyamide, synthesized on the bases of dichloranhydride of isophthalic acid and two diamines (4,4’‒(2,2’‒sodium disulfonate)‒diaminodephenyl, 4,4’‒(2,2’‒dicarboxylic acid)‒diaminodiphenylmethyl) and bovine serum albumin (BSA) in aqueous solutions were studied. It was shown that as a result of macromolecular reactions protein‒polyelectrolyte complexes (PPC) forms, stabilized mainly by electrostatic forces. To characterize their composition we used the value of parameter φ, defined as an amount of ionic groups of polyelectrolytes calculated per macromolecule of protein. Using spectrophotometry and conductometry it was established that the composition of PPC in the studied systems when components are mixed at optimal conditions corresponds to the value of φ ~30 – 90. The conditions for the existence of insoluble PPC were determined. In the case of precipitation of poly-N,N‒dimethyl‒N,N‒diallylammonium chloride and chitosan in protein – polyelectrolyte reactions the maximum yield of the product is observed at pH ≥ 7. The introduction of sodium carboxymethylcellulose and aromatic copolyamide into the interaction with protein accompanied by shifting the range of PPC existence into the acidic region: the maximum yield of the product is observed at рН ≤ 4. The size of the formed complex particles ranges from 10 nm ([PE]/[BSA] = 0.01 – 0.05 g/g) to ~ 1.0 ‒ 5.5 μm ([PE]/[BSA] = 0.1 – 0.35 g/g). In case of relatively short‒chained aromatic copolyamide, containing significant amount of non‒ionized carboxylic groups, the ratio of micron size particles is about 5%. The presence of sulfonate and carboxylic groups in the composition of copolyamide gives an additional opportunity to regulate the conversation degree in the interpolyelectrolyte reactions, thus also implying the structure and the composition of the formed complexes.

References

Kabanov V.A. Polyelectrolyte complexes in solution and in condensed phase. Usp. Khim. 2005. V. 74. N 1. P. 5-24 (in Russian).

Polyelectrolytes. Ed. by P.M. Visakh, O. Bayraktar, G.A. Picó. Switzerland: Springer. 2014. 388 p. DOI: 10.1007/978-3-319-01680-1.

Polyelectrolyte complexes in the dispersed and solid state. I Principles and theory. Ed. by M. Müller. Berlin Heidelberg: Springer. 2014. 229 p. DOI: 10.1007/978-3-642-40734-5.

Izumrudov V.A. Phenomenon of self-Assembly and molecular "recognition" in solutions of (bio)polyelectrolyte complexes. Usp. Khim. 2008. V. 77. N 4. P. 401-414 (in Russian).

Polyelectrolyte complexes in the dispersed and solid state. II Application aspects. Ed. by M. Müller. Berlin Heidelberg: Springer. 2014. 264 p. DOI: 10.1007/978-3-642-40746-8.

Cooper C.L., Dubin P.L., Kayitmazer A.B., Turksen S. Polyelec-trolyte-protein complexes. Current Opinion Coll. Int. Sci. 2005. V. 10. P. 52-78. DOI: 10.1016/j.cocis.2005.05.007.

Boeris V., Farruggia B., Nerli B., Romanini D., Picó G. Protein-flexible chain polymer interactions to explain protein partition in aqueous two-phase systems and the protein- polyelectrolyte complexe formation. Int. J. Biol. Macromol. 2007. V. 41. P. 286-294. DOI: 10.1016/j.ijbiomac.2007.03.006.

Lombardi J., Woitovich V., Picó G., Boeris V. Obtainment of a highly concentrated pancreatic serine proteases extract from bovine pancreas by precipitation with polyacrylate. Sep. Purif. Technol. 2013. V. 116. P. 170-178. DOI: 10.1002/jspurtech.2013.03/007.

Kurinomaru T., Maruyama T., Izaki S., Handa K., Kimoto T., Shiraki K. Protein-poly(amino acid)complex precipitation for high-concentration protein formulation. J. Pharmaceut. Sci. 2014. V. 103. P. 2248-2254. DOI: 10.1002/jps.24025.

Valetti N., Brassesco M., Picó G. Polyelectrolyte-protein complexes: a viable platform in the downstream processes of industrial enzymes at scaling up level. J. Chem. Technol. Biotechnol. 2016. V. 91. N 12. P. 2921-2928. DOI: 10.1002/jctb.5050.

Schwinté P., Voegel J.-C., Picart C., Haikel Y., Schaaf P., Szalontai B. Stabilizing effects of various polyelectrolyte multilayer films on the structure of adsorbed/embedded fibrinogen molecules: an ATR-FTIR study. J. Phys. Chem. B. 2001. V. 105. P. 11906-11916. DOI: 10.1021/jp0123031.

Multilayer thin films: sequential assembly of nanocomposite materials. Ed. by G. Decher, J.B. Schlenoff. Weinheim: Wiley-VCH. 2003. 543 p. DOI: 10.1002/352-7-600-574.

Becker A., Henzler K., Welsch N., Ballauff M., Borisov O. Protein and polyelectrolyte: a charged relationship. Cur. Opin. Coll. Interf. Sci. 2012. V. 17. P. 90-96. DOI: 10.1016/jcocis.2011.10.001.

Schaaf P., Schlenoff B. Saloplastics: processing compact polyelectrolyte complexes. Adv. Mater. 2015. V. 27. N 15. P. 2420-2432. DOI: 10.1002/adma.201500176.

Hilal N., Nigmatullin R., Alpatova A. Immobilization of crosslinked lipase aggregates within microporous polymeric membranes. J. Membr. Sci. 2004. V. 238. P. 131-141. DOI: 10.1016/j.memsci.2004.04.002.

Talukdar H., Kundu S. Thin films of protein-polyelectrolyte complexes show larger redshift in optical emission irrespective of protein conformation. J. Mol. Struct. 2017. V. 1143. P. 84-90. DOI: 10.1016/j.molstruc.2017.04.074.

Antipov A., Sukhorukov G., Leporatti S., Radtchenko I., Donath E., Mohwald H. Polyelectrolyte multilayer capsule permeability control. Col. Surf. A. 2002. V. 198. P. 535-541. DOI: 10.1002/1521-3927(20010101).

Korolev N., Lyubartsev A., Nordenskiȍld L. Computer modeling demonstrates that electrostatic attraction of nucleosomal DNA is mediated by histone tails. Biophys. J. 2006. V. 90. P. 4305-4316. DOI: 10.1002/bip.10583.

Maximova E.D., Zhiryakova M.V., Faizuloev E.B., Nikonova A.A., Ezhov A.A., Izumrudov V.A., Orlov V.N., Grozdova I.D., Melik-Nubarov N.S. Cationic nanogels as Trojan carriers for dis-ruption of endosomes. Col. Surf. B: Biointerfaces. 2015. V. 136. P. 981-988. DOI: 10.1016/j.colsurfb.2015.10.051.

Rinodo M. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 2006. V. 31 (7). P. 603-632. DOI: 10.1016/j.progpolymsci.2006.06.001.

Saburova E.A., Dybowska Yu.N., Sivozhelezov S.V., Elfimova L.I. Electrostatic contribution to the interaction of some proteins with polyelectrolytes. Biofizik. 2005. V. 50 (3). P. 423-433 (in Russian).

Eisenbart E. Biomaterials for tissue engineering. Adv. Eng. Mat. 2007. V. 9. P. 1051-1060. DOI: 10.1002/adem.200700287.

Asimakopoulos Th., Staikos G. Comlexation of bovine serum albumin with cationic polyelectrolyte at pH 7.40 – Formation of sol-uble complexes. Eur. Polym. J. 2015. V. 71. P. 567-574. DOI: 10.1016/j.eurpolymj.2015.08.022.

Othman M., Aschi A., Gharbi A. Polyacrylic acids-bovine serum albumin complexation: Structure and dynamics. Mat. Sci. Eng. 2015. V. 58. P. 316-323 DOI: 10.1016/j.msec.2015.08.057.

Milyaeva O., Gochev G., Loglio G., Miller R., Noskov B. Influence of polyelectrolyte on dynamic surface properties of fibrinogen solutions. Col. Sur. A: Physicochem. Eng. Aspects. 2017. V. 532. P. 108-115. DOI: 10.1016/j.colsurfa.2017.06.002.

Cherkasov A.N. Rapid analysis of ultrafiltration. Membr. Struct., Separ. Sci. and Technol. 2005. V. 40. N 14. P. 2775-2801.

Jakubke H.-D., Jeschkeit H. Aminosӓuren, Peptide, Proteine. Berlin: Akademie-Verlag. 1982. 457 p.

Fedotov Yu.A., Smirnova N.N. Aromatic polyamides with ionogenic groups: synthesis, properties and applications. Plast. Massy. 2008. N 8. P. 18-21 (in Russian).

Skobeleva V.B., Zinchenko A.V., Rogacheva V.B., Zezin A.B. Interaction of polyamine with bovine serum albumin. Vestn. Mosk. Univ. Ser. 2. Khimiya. 1998. V. 39. N 4. P. 268-271 (in Russian).

Peters T. All about albumin: biochemistry, genetics and medical applications. San Diego: Acad. Press. 1996. 456 p.

Ahmed L., Xia J., Dubin P., Kokufuta E. Stoichiometry and mech-anism of complex formation protein-polyelectrolyte coacervation. J. Macromol. Sci. Part A: Pure Appl. Chem. 1994. V. 31. N 1. P. 17-29. DOI: 10.1080/10601329409349714.

Published
2019-07-21
How to Cite
Smirnova, N. N., & Smirnov, K. V. (2019). INTERACTION OF NATURAL AND SYNTHETIC POLYELECTROLYTES WITH BOVINE SERUM ALBUMIN. ChemChemTech, 62(7), 45-51. https://doi.org/10.6060/ivkkt.20196207.5839
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)