BIFUNCTIONAL СО/SIO2-Fe-ZSM-5-Al2O3 CATALYSTS FOR SYNTHESIS OF HYDROCARBONS OF ENGINE FRACTIONS

  • Alexander P. Savostyanov South-Russian State Polytechnic University (NPI) named after M.I. Platov
  • Roman E. Yakovenko South-Russian State Polytechnic University (NPI) named after M.I. Platov
  • Grigory B. Narochny South-Russian State Polytechnic University (NPI) named after M.I. Platov
  • Evgenia V. Nepomnyashchikh South-Russian State Polytechnic University (NPI) named after M.I. Platov
  • Sergey A. Mitchenko Litvinenko Institute of Physical Organic Chemistry and Coal Chemistry
Keywords: Fischer-Tropsch synthesis, Co/SiO2 catalyst, iron catalyst, diesel fuel, physicochemical characteristics, selectivity to C5

Abstract

The process of obtaining motor fractions of hydrocarbons on bifunctional Со/SiO2-Fe-ZSM-5-Al2O3, catalysts obtained by mixing has been studied. The effect of the method of introducing iron into a catalyst (in the form of reduced iron and its nitrate) at the molding stage is studied. The catalysts were tested in a continuous mode for 30 h at a gas volume velocity of 1000 h-1, a pressure of 2 MPa and a temperature of 240 ° C. It is shown that when iron is introduced in the form of a reduced powder, the temperature gradient in the catalyst bed decreases, and the selectivity for C5+ hydrocarbons increases by 6% in comparison with the catalyst sample without the addition of iron. It has been established that the introduction of iron into the catalyst in the form of a nitrate salt is a less effective method. It blocks the operation of polymerization and acid sites of bifunctional catalysts, contributes to a reduction in CO conversion and selectivity for C5+ hydrocarbons. It is shown that the introduction of iron significantly changes the group composition and molecular-mass distribution of the produced hydrocarbons - the shares of saturated hydrocarbons are increases, predominantly of a linear structure, the yield of olefins decreases. The obtained C5+ hydrocarbons mainly consist of gasoline and diesel fractions. The introduction of iron promotes an increase in the content of diesel fractions in synthesis products. Thus, with the introduction of iron in the form of a nitrate salt, the content of the diesel fraction increased by 1.2 times in comparison with the sample of a catalyst without iron.

References

Arutyunov V.S., Lisichkin G.V. Energy resources of the 21st century: problems and forecasts. Can renewable energy sources replace fossil fuels? Usp. Khim.. 2017. N 86 (8). Р. 777-804 (in Russian). DOI: 10.1070/RCR4723.

Todic B., Nowicki L., Nikacevic N., Bukur D.B. Fischer-Tropsch synthesis product selectivity over an industrial ironbased catalyst: Effect of process conditions. Catal. Today. 2016. V. 261. P. 28-39. DOI: 10.1016/j.cattod.2015.09.005.

Khodakov A.Y., Chu W., Fongarland P. Advances in the Development of Novel Cobalt Fischer-Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. Chem. Rev. 2007. V. 107. P. 1692-1744. DOI: 10.1021/cr050972v.

Dry M.E. Practical and theoretical aspects of the catalytic Fischer-Tropsch process. Appl. Catal. A: Gen. 1996. V. 138. P. 319-334. DOI: 10.1016/0926-860X(95)00306-1.

Dry M.E. The Fischer–Tropsch process: 1950-2000. Catal. Today. 2002. V. 71. P. 227-241. DOI: 10.1016/S0920-5861(01)00453-9.

Visconti C.G., Tronconi E., Groppi G., Lietti L., Iovane M., Rossini S., Zennaro R. Monolithic catalysts with high thermal conductivity for the Fischer-Tropsch synthesis in tubular reactors. Chem. Eng. J. 2011. V. 171. P. 1294-1307. DOI: 10.1016/j.cej.2011.05.014.

Mordkovich V.Z., Ermolaev V.S., Mitberg E.B., Sineva L.V., Solomonik I.G., Ermolaev I.S., Asalieva E.Yu. Composite pelletized catalyst for higher one-pass conversion and productivity in Fischer-Tropsch. Process. Res. Chem. Intermed. 2015. V. 41(12). P. 9539-9550. DOI: 10.1007/s11164-015-1978-5.

Asalieva E., Gryaznov K., Kulchakovskaya E., Ermolaev I., Sineva L., Mordkovich V. Fischer-Tropsch synthesis on cobalt-based catalysts with different thermally conductive additives. Appl. Catal. A: Gen. 2015. V. 505. P. 260-266. DOI: 10.1016/j.apcata.2015.08.006.

Anderson R.B., Riedel R.A, Storch H.H. Fischer‐Tropsch Reaction Mechanism Involving Stepwise Growth of Carbon Chain. J. Chem. Phys. 1951. V. 19. P. 313-319. DOI: 10.1063/1.1748201.

Hodala J. L., Jung J.S., Yang E.H., Gi H.H., Noh Y.S., Moon D.J. Hydrocracking of FT-wax to fuels over non-noble metal catalysts. Fuel. 2016. V. 185. Р. 339-347. DOI: 10.1016/j.fuel.2016.07.124.

Gerasimov D.N., Fadeev V.V., Loginova A.N., Lysenko S.V. Hydroisomerization of Long-Chain Paraffins: Mechanism and Catalysts. Part II. Catal. Indust. 2015. V. 7. N 3. P. 198-213. DOI: 10.1134/S2070050415030058.

Pabst K., Kraushaar-Czarnetzki B., Schaub G. Combi-nation of Fischer–Tropsch Synthesis and Hydropro-cessing in a Single-Stage Reactor. Part II. Effect of Catalyst Combinations. Indust. Eng. Chem. Res. 2013 V. 52. P. 8988-8995. DOI: 10.1021/ie3030483.

Sun J., Niu W., Taguchi A., Abe T., Yoneyama Y., Tsubaki N. Combining wet impregnation and dry sputtering to prepare highlyactive CoPd/H-ZSM5 ternary catalysts applied for tandem catalytic synthesis of isoparaffins. Catal. Sci. Technol. 2014. V. 4. Р. 1260-1267. DOI: 10.1039/c3cy01091k.

Xing C., Yang G., Wu M. Hierarchical zeolite Y supported cobalt bifunctional catalyst for facilely tuning the product distribution of Fischer–Tropsch synthesis. Fuel. 2015. V. 148. Р. 48-57. DOI: 10.1016/j.fuel.2015.01.040.

Tsubaki N., Yoneyama Y., Michiki K., Fujimoto K. Threecompo-nent hybrid catalyst for direct synthesis of isoparaffin via modified Fischer-Tropsch synthesis. Catal. Commun. 2003. V. 4. Р. 108-111. DOI: 10.1016/S1566-7367(03)00003-7.

Sineva L.V., Asalieva E.Yu., Mordkovich V.Z. The role of zeolite in the Fischer-Tropsch synthesis over cobalt-zeolite catalysts. Usp. Khim. 2015. V. 84. N 11. P. 1176-1189 (in Russian). DOI: 10.1070/RCR4464.

Lapidus A.L, Krylova A.Yu. Catalytic synthesis of isoalkanes and aromatic hydrocarbons from CO and H2. Usp. Khim. 1998. N 67. P. 941-950. DOI: 10.1021/cr050972v.

Savost’yanov A.P., Narochnyi G.B., Yakovenko R.E., Saliev A.N., Sulima S.I., Zubkov I.N., Nekroenko, S.V., Mitchenko S.A. Synthesis of Low-Pour-Point Diesel Fuel in the Presence of a Composite Cobalt-Containing Catalyst. Petrol. Chem. 2017. V. 57. P. 1186-1189. DOI: 10.1134/S0965544117060251.

Savost’yanov A.P., Yakovenko R.E., Narochnyi G.B., Bakun V.G., Sulima S.I., Yakuba E.S., Mitchenko S.A. Industrial catalyst for the selective Fischer-Tropsch synthesis of long-chain hydrocarbons. Kinet. Catal. 2017. V. 58. N 1. P. 81-91. DOI: 10.1134/S0023158417010062.

Shavaleev D.A., Travkina O.S., Alekhina I.E., Ershtein A.S., Basimova R.A., Pavlov M.L. Synthesis and study of physicochemical properties of catalytic system based on zeolite ZSM-5. Vestn. Bashkir. Un-ta. 2015. N 3(20). P. 58-65 (in Russian).

Yakovenko R.E., Zubkov I.N., Narochnyi G.B., Nekroenko S.V., Savost’yanov A.P. The Influence of the Cobalt-Containing Component of the Composite Catalyst on the One-Stage Process for Synthesis of Liquid Hydro-carbons from CO and H2. Kataliz Prom. 2019. V. 19. N 3. P. 178-186 (in Russian). DOI: 10.18412/1816-0387-2019-3-178-186.

Iglesia E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl. Catal. A: Gen. 1997. V. 161. P. 59-78. DOI: 10.1016/S0926-860X(97)00186-5.

Published
2019-08-20
How to Cite
Savostyanov, A. P., Yakovenko, R. E., Narochny, G. B., Nepomnyashchikh, E. V., & Mitchenko, S. A. (2019). BIFUNCTIONAL СО/SIO2-Fe-ZSM-5-Al2O3 CATALYSTS FOR SYNTHESIS OF HYDROCARBONS OF ENGINE FRACTIONS. ChemChemTech, 62(8), 139-146. https://doi.org/10.6060/ivkkt.20196208.5905
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)