TETRAACETYLGLYCOLURIL AND ITS DERIVATIVES: SYNTHESIS, PROPERTIES AND APPLICATION
Abstract
Due to high multi-functionality, bicyclic ureas of octoic type (also known as glycolurils) are used in many applications, including the manufacturing of slow-release nitrogen fertilizers, additives for paints and coatings, polymer stabilizers, psychoactive drugs, intermediates for synthesize supramolecular compounds such as cucurbiturils and bambusurils and other practically important products. Among the glycoluril derivatives, N,N,N,N-tetraacetic derivative named as tetraacetylglycoluril occupies a special place and is produced as a fine chemical and used as a bleaching activator (as an example for perborates) in detergents. Tetraacetylglycoluril as a parent compound of acylated glycolurils finds its application as a bleaching activator in detergents and successfully competes with its counterpart tetraacetylethylenediamine. The chemistry of tetraacetylglycoluril presented in the literature is fragmentary and unsystematized, and does not allow receiving a deep understanding on the chemical properties and fields of application of this available compound. We suppose that the availability and multi-functionality of the tetraacetylglycoluril makes it possible to realize its synthetic potential. In the present article the main processes to produce tetraacetylglycoluril, its chemical properties and application fields are discussed in details. Chemical properties of tetraacetylglycoluril are described in details for reactions of hydrolysis, nucleophilic substitution, N- and O-acylation of amines and alcohols. It is noteworthy that tetraacetylglycoluril can be successfully used as a soft acylating agent for biogenic organic substrates and as a building block to synthesize new supramolecular compounds.
References
Schiff H. Ueber Acetylenharnstoff. Justus Liebigs Annalen der Chemie banner. 1877. P. 157 – 161. DOI: 10.1002/jlac.18771890110.
De Groot A.C., Flyvholm M.-A., Lensen G., Menne T., Coenraads P.-J. Formaldehyde‐releasers: relationship to formaldehyde contact allergy. Contact allergy to formaldehyde and inventory of formaldehyde‐releasers. Contact Dermatitis. 2009. V. 61. P. 63 – 85. DOI: 10.1111/j.1600-0536.2009.01582.x.
Slezak F.B., Bluestone H., Magee T.A., Wotiz J.H. Preparation of substituted glycolurils and their N-chlorinated derivatives. J. Org. Chem. 1962. V. 27. P. 2181 – 2183. DOI: 10.1021/jo01053a069.
Mashkovskiy M.D. Medicine remedies. M.: Novaya volna. 2005. 1216 p. (in Russian).
Prokopov A.A., Kostebelov N.V., Berlyand A.S. Experimental pharmacokinetics of Albikar. Khim.-Farm. Zurn. 2002. V. 36. N 3. P. 13 – 16 (in Russian). DOI: 10.30906/0023-1134-2002-36-3-13-16.
Kravchenko A.N., Baranov V.V., Gazieva G.A. Synthesis of glycolurils and their analogues. Usp. Khim. 2018. V. 87. N 1. P. 89 – 108. DOI: 10.1070/RCR4763.
Cui K., Xu G., Xu Z., Wang P., Xue M., Meng Z., Li J., Wang B., Ge Z., Qin G. Synthesis and characterization of a thermally and hydrolytically stable energetic material based on nitrourea. Propel., Ex-plos., Pyrotech. 2014. V. 39. P. 662 – 669. DOI: 10.1002/prep.201300100.
Zharkov M.N., Kuchurov I.V., Fomenkov I.V., Zlotin S.G., Tar-takovsky V.A. Nitration of glycoluril derivatives in liquid carbon dioxide. Mendeleev Commun. 2015. V. 25. P. 15 – 16. DOI: 10.1016/j.mencom.2015.01.004.
Zhang J., Xiao C., Zhai L., Wang X., Bi F., Wang B. Synthesis and properties of the fused aza-polynitrocyclic compounds. Chin. J. Org. Chem. 2016. V. 36. P. 1197 – 1207. DOI: 10.6023/cjoc201512024.
Assaf K.I., Nau W.M. Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 2015. V. 44. P. 394 – 418. DOI: 10.1039/c4cs00273c.
Barrow S.J., Kasera S., Rowland M.J., Barrio J.D., Scherman O.A. Cucurbituril-based molecular recognition. Chem. Rev. 2015. V. 115. P. 12320 – 12406. DOI: 10.1021/acs.chemrev.5b00341.
Lagona J., Mukhopadhyay P., Chakrabarti S., Isaacs L. The cucurbit[n]uril family. Angew Chem. Int. Ed. 2005. V. 44. P. 4844 – 4870. DOI: 10.1002/anie.200460675.
Havel V., Babiak M., Sindelar V. Modulation of bambusuril anion affinity in water. Chem. Eur. J. 2017. V. 23. P. 8963 – 8968. DOI: 10.1002/chem.201701316.
Svec J., Necas M., Sindelar V. Bambus[6]uril. Angew. Chemistry. 2010. V. 122. P. 2428 – 2431. DOI: 10.1002/ange.201000420.
Zavelskaya V.D., Zamchuk Z.S. Key accomplishments in synthesis of prospect bleachers. M.: NIITEkhim. 1988. 42 p. (in Russian).
Stancl M., Khan M.S.A., Sindelar V. 1, 6-dibenzylglycoluril for synthesis of deprotected glycoluril dimer. Tetrahedron. 2011. V. 67. P. 8937 – 8941. DOI: 10.1016/j.tet.2011.08.097.
Atavin E.G., Golubinskiy A.V., Kravchenko A.N., Lebedev O.V., Vilkov L.V. Electron diffraction investigation of Mebikar molecule. Zurn. Strukt. Khim. 2005. V. 46. N 3. P. 430 – 434 (in Russian).
Matta C.F., Cow C.N., Sun S., Britten J.F., Harrison P.H.M. Twisted amides: crystal and optimized structures, and molecular geometry analysis of 1-acetyl-3,4,7,8-tetramethylglycoluril and 1,6-diacetyl-3,4,7,8-tetramethylglycoluril. J. Molec. Struct. 2000. V. 523. P. 241 – 255. DOI: 10.1016/S0022-2860(99)00397-X.
Matta C.F., Cow C.N., Harrison P.H.M. Twisted am-ides: X-ray crystallographic and theoretical study of two acylated glycolurils with aromatic substituents. J. Molec. Struct. 2003. V. 660. P. 81 – 97. DOI: 10.1016/j.molstruc.2003.08.005.
Kühling D. Über die Acylierung von Glikolurilen. Justus Liebigs Annalen der Chemie banner. 1973. P. 263 – 277. DOI: 10.1002/jlac.197319730215.
Bakibaev A.A., Mamaeva E.A., Yanovskiy V.A., Bystritskiy E.L., Yagovkin A.Yu. Preparative methods of synthesis of nitrogen-containing compounds based on urea. Tomsk: Agraph-Press. 2007. 164 p. (in Russian).
Cow C.N., Harrison P.H.M. A facile preparation of thioglycolurils from glycolurils, and regioselectivity in thioglycoluril template-directed crossed-Claisen condensations. J. Org. Chem. 1997. V. 62. P. 8834 – 8840. DOI: 10.1021/jo9713823.
Fürstner A. Recent advancements in the Reformatsky reaction. Synthesis. 1989. V. 8. P. 571 – 590. DOI: 10.1055/s-1989-27326.
Smith M.B., March J. Advanced organic chemistry: reactions, mechanisms and structure. New Jersey: John Wiley and sons Inc. 2007. 2357 p.
Panshina S.Yu., Taiyshibekova E.K., Salkeeva L.K., Bakibaev A.A., Mamaeva E.A. Synthesis and investigation of selected bishalogenacylated glycoluril derivatives. Proceedings of scientific con-ference «Actual problems of organic chemistry». Novosibirsk: NIOC SB RAS. 2017. P.106 (in Russian).
Salkeeva L.K., Taiyshibekova E.K., Bakibaev A.A., Minaeva E.V., Makin B.K., Sugralina L.M., Salkeeva A.K. New phosphorylated glycoluril derivatives. Zhurn. Obsch. Khim. 2017. V. 87. N 3. P. 435 – 440 (in Russian). DOI: 10.1134/S1070363217030124.
Chulkova I.V., Derina K.V., Tayshibekova V.K., Dorozhko E.V., Korotkova V.I. Total cholesterol test using modified electrode. Mezhdunar. Stud. Nauch. Vestn. 2015. N 3-4. P. 570 – 571 (in Russian).
Hase C., Kühling D. Umsetzung von Tetraacetylglykoluril mit Nucleophilen. Justus Liebigs Annalen der Chemie banner. 1975. P. 95 – 102. DOI: 10.1002/jlac.197519750111.
Boileau J., Wimmer E., Carail M., Gallo R. Methodes de preparation de derives nitres et nitroacetyles du glycolurile. Bull. Soc. Chim. France. 1986. V. 3. P. 465 – 469.
Hofmann J., Just G., Moya D., Ostermann S., Pritzkow W., Visothea M. Bleaching activators as acylating agents. Kinetics of the acetylation of piperidine by some bleaching activators. J. Prakt. Chem. 1990. V. 332. P. 176 – 180.
Kalisiak J., Trauger S.A., Kalisiak E., Morita H., Fokin V.V., Adams M.W.W., Sharpless K.B., Siuzdak G. Identification of a new endogenous metabolite and the characterization of its protein interactions through an immobilization approach. J. Am. Chem. Soc. 2009. V. 131. P. 378 – 386. DOI: 10.1021/ja808172n.
Saab N.H., West E.E., Biezck N.C., Preuss C.V., Mank A.R., Casero R.A., Woster P.M. Synthesis and evaluation of unsymmetrically substituted polyamine analogs as modulators of human spermidine/spermine-N1-acetyltransferase (SSAT) and as potential anti-tumor agents. J. Med. Chem. 1993. V. 36. P. 2998 – 3004. DOI: 10.1021/jm00072a020.
Geall L.J., Baugh J.A., Loyevsky M., Gordeuk V.R., Al-Abed Y., Bucala R. Targeting malaria with polyamines. Bioconjug. Chem. 2004. V. 15. P. 1161 – 1165. DOI: 10.1021/bc0499578.
Bakibaev A.A., Hoang N.F., Mamontov G.V. Mechanochemical activation of reaction between tetraacetylglycoluril and selected primary amines with cyclic fragment – the way to respective amides. Zhurn. Organ. Khim. 2018. V. 54. N 4. P. 663 – 664 (in Russian). DOI: 10.1134/S1070428018040292.
Wang G.-W. Mechanochemical organic synthesis. Chem. Soc. Rev. 2013. V. 42. P. 7668 – 7700. DOI: 10.1039/C3CS35526H.
James S.L., Friscic T. Mechanochemistry. Chem. Soc. Rev. 2013. V. 42. P. 7494 – 7496. DOI: 10.1039/C3CS90058D.
Hoang N.F., Bakibaev A.A., Malkov V.S. Bis-deacetylation of tetraacetylglycoluryl under action of ureas. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 7. P. 50 – 54 (in Rus-sian). DOI: 10.6060/ivkkt.20186107.5800.
Azizi N., Alipour M. Eco-efficiency and scalable synthesis of bisamides in deep eutectic solvent. J. Molec. Liq. 2015. V. 206. P. 268 – 271. DOI: 10.1016/j.molliq.2015.02.033.
Arrous S., Bakibaev A., Hoang Ph., Boudebouz I., Malkov V. Convenient and mild method for acylation of betulin using tetraacetylglycoluril. Internat. J. Chem. Tech. Res. 2018. V. 11. P. 285 – 294. DOI: 10.20902/IJCTR.2018.110531.
Katritzky A.R., He H.-Y., Suzuki K. N-acylbenzotriazoles: neutral acylating reagents for the preparation of primary, secondary, and tertiary amides. J. Org. Chem. 2000. V. 65. P. 8210 – 8213. DOI: 10.1021/jo000792f.
Katritzky A.R., Cai C., Singh S.K. Efficient microwave access to polysubstituted amidines from imidoylbenzotriazoles. J. Org. Chem. 2006. V. 71. P. 3375 – 3380. DOI: 10.1021/jo052443x.
Dineen T.A., Zajac M.A., Myers A.G. Efficient transamidation of primary carboxamides by in situ activation with N,N-dialkylformamide dimethyl acetals. J. Am. Chem. Soc. 2006. V. 128. P. 16406 – 16409. DOI: 10.1021/ja066728i.
Kim M.-J., Kim W.-H., Han K., Choi Y.K., Park J. Dynamic kinetic resolution of primary amines with a recyclable Pd nanocatalyst for racemization. Org. Lett. 2007. V. 9. P. 1157 – 1159. DOI: 10.1021/ol070130d.
Krishna Mohan K.V., Narender N., Kulkarni S.J. Zeolite catalyzed acylation of alcohols and amines with acetic acid under microwave irradiation. Green Chem. 2006. V. 8. P. 368 – 372. DOI: 10.1039/B600031B.
Umrigar V., Chakraborty M., Parikh P.A. Microwave irradiated acetylation of p-anisidine: a step towards green chemistry. Internat. J. Chem. Reactor Eng. 2008. V. 6. P. 1 – 12. DOI: 10.2202/1542-6580.1770.
Boudebouz I., Arrous S., Bakibaev A., Hoang Ph., Malkov V. Tetra acetoxymethyl glycoluril as an efficient and novel reagent for acylation of amines. Internat. J. Chem. Tech. Res. 2018. V. 11. P. 301 – 315. DOI: 10.20902/IJCTR.2018.110533.