STRUCTURAL MODEL OF EFFICIENCY OF COVALENT FUNCTIONALIZATION OF CARBON NANOTUBES

  • Georgii V. Kozlov Kh.M. Berbekov Kabardino-Balkarian State University
  • Igor V. Dolbin Kh.M. Berbekov Kabardino-Balkarian State University
Keywords: nanocomposite, carbon nanotubes, functionalization, structure, specific surface, reinforcement degree

Abstract

Functionalization of carbon nanotubes (covalent and noncovalent ones) is effective and often applied method of enhancement of their interaction with polymer matrix of nanocomposites. In present work the treatment is proposed, for the first time allowing quantitative estimation of efficiency (quality) of this nanofiller functionalization. For this purpose proposed earlier generalized model was used, taking into consideration characteristics of matrix polymer and nanofiller and also type of the last. Application of the indicated model allows to obtain quantitative characteristic of functionalization efficiency and also elucidation of interconnection of the indicated efficiency with structure of carbon nanotubes in polymer matrix of nanocomposite, namely, with radius of their annular structures. It has been found that the same method of functionalization from the chemical point of view can be changed its efficiency in 20 times that is dependent upon structure (radius) of annular formations of carbon nanotubes. Their specific surface is the more precise characteristic of these formations. This surface serves as indicator of intensity of contact of polymer matrix and surface of nanotubes, which in the end forms mechanical and other properties of the considered nanocomposites. The equation has been obtained, showing the dependence of functionalization efficiency on two parameters: effective specific surface and content of carbon nanotubes. The sharp discrete reduction of functionalization occurs at reaching of percolation threshold of nanofiller. This means that functionalization of local structures of carbon nanotubes is more effective than functionalization of uninterrupted structures of this nanofiller. The most important mechanical property of polymer nanocomposites, namely, the reinforcement degree, is defined unequivocally by efficiency of functionalization. This approach allows making structural prediction of mechanical properties of nanocomposites polymer/carbon nanotube depending of efficiency of nanofiller functionalization.

References

Moniruzzaman M., Winey K.I. Polymer nanocomposites containing carbon nanotubes. Macromolecules. 2006. V. 39. N 16. P. 5194-5205. DOI: 10.1021/ma060733p

Mikitaev A.K., Kozlov G.V., Zaikov G.E. Polymer nano-composites: variety of structural forms and applications. New York: Science Publishers, Inc. 2008. 319 p.

Mylvaganam K., Zhang L.C. Chemical bonding in polyethylene-nanotube composites: a quantum mechanics prediction. Phys. Chem. B. 2004. V. 108. N 17. P. 5217-5220. DOI: 10.1021/jp037619i.

Liu L., Etika K.C., Liao K.-S., Hess L.A., Bergbreiter D.E., Grunlan J.C. Comparison of covalently and noncovalently functionalized carbon nanotubes in epoxy. Macromol. Rapid Commun. 2008. V. 33. N 3. P. 627-632. DOI: 10.1002/marc.200800778.

Supova M., Martynkova G.S., Barabaszova K. Effect of nanofiller dispersion in polymer matrices: a review. Sci. Adv. Mater. 2001. V. 3. N 1. P. 1-25. DOI: 10.1166/sam.2011.1136.

Sun X., Sun H., Li H., Peng H. Developing polymer composite materials: carbon nanotubes or grapheme? Adv. Mater. 2013. V. 25. N 37. P. 5153-5177. DOI: 10.1002/adma201301926.

Schaefer D.W., Zhao J., Dowty H., Alexander M., Orler E.B. Carbon Nanofibre reinforcement of soft materials. Soft Matter. 2008. V. 4. N 10. P. 2071-2079. DOI: 10.1039/b805314f.

Blond D., Barron V., Ruether M., Ryan K.P., Nicolosi V., Blau W.J., Coleman J.N. Enhancement of modulus, strength, and toughness in poly(methyl methacrylate)-based composites by the incorporation of poly(methyl methacrylate)-functionalized nanotubes. Adv. Funct. Mater. 2006. V. 16. N 6. P. 1608-1614. DOI: 10.1002/adfm.200500855.

Omidi M., Rokni H., Milani A.S., Seethaler R.J., Arasten R. Prediction of the mechanical characteristics of multiwalled carbon nanotube/epoxy composites using a new form of the rule of mixtures. Carbon. 2010. V. 48. N 11. P. 3218-3228. DOI: 10.1016/j.carbon.2010.05.007.

Zhirikova Z.M., Kozlov G.V., Aloev V.Z. Nanocomposite polymer/carbon nanotube: the prediction of reinforcement degree. Nanoindustriya. 2012. N 3. P. 38-41 (in Russian).

Жирикова З.М., Козлов Г.В., Алоев В.З. Нанокомпозит полимер/углеродные нанотрубки: прогнозирование степени усиления. Наноиндустрия. 2012. № 3. С. 38-41.

Yakh’yaeva Kh.Sh., Kozlov G.V., Magomedov G.M. The role of the nanofiller surface in the reinforcement of nanocomposite polymer-carbon nanotubes. J. Surface Investigat. X-ray, Synchrotron and Neutron Techniques. 2015. V. 9. N 3. P. 468-470. DOI: 10.1134/S1027451015030143.

Mikitaev A.K., Kozlov G.V. Description of the degree of reinforcement of polymer/carbon nanotube nanocomposites in the framework of percolation models. Phys. Solid State. 2015. V. 57. N 5. P. 974-977. DOI: 10.1134/s1063783415050224.

Bridge B. Theoretical modeling of the critical volume fraction for percolation conductivity of fibreloaded conductive polymer composites. J. Mater. Sci. Lett. 1989. V. 8. N 2. P. 102-103. DOI: 10.1007/BF00720265.

Zhongcan O.-Y., Su Z.-B., Wang C.-L. Coil formation in multishell carbon nanotubes: competition between curvature elasticity and interlayer adhesion. Phys. Rev. Lett. 1997. V. 78. N 21. P. 4055-4058. DOI: 10.1103/PhysRevLett.78.4055.

Schaefer D.W., Justice R.S. How nano are nanocomposites? Macromolecules. 2007. V. 40. N 24. P. 8501-8517. DOI: 10.1021/ma070356w.

Mikitaev A.K., Kozlov G.V. Dependence of the degree of reinforcement of polymer/carbon nanotubes nanocomposites on the nanofiller dimension. Dokl. Phys. 2015. V. 60. N 5. P. 203-206. DOI: 10.1134/s102833505002x.

Yanovsky Yu.G., Kozlov G.V., Zhirikova Z.M., Aloev V.Z., Karnet Yu.N. Special features of the structure of carbon nanotubes in polymer composite media. Nanomechanics Sci. Techn. An Intern. J. 2012. V. 3. N 2. P. 99-124. DOI: 10.1615/NanomechanicsSciTechnol.Int.J.v.3.i.2.10.

Peigney A., Laurent C., Flahaut E., Bacsa R., Rousset A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon. 2001. V. 39. N 4. P. 507-514. DOI: 10.1016/s0008-6223(00)00155-x.

Jang B.Z., Zhamu A. Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J. Mater. Sci. 2008. V. 43. N 22. P. 5092-5101. DOI: 10.1007/s10823-008-2755-2.

Kozlov G.V., Mikitaev A.K., Zaikov G.E. The fractal physics of polymer synthesis. Toronto, New Jersey: Apple Academic Press. 2014. 359 p.

Published
2019-10-29
How to Cite
Kozlov, G. V., & Dolbin, I. V. (2019). STRUCTURAL MODEL OF EFFICIENCY OF COVALENT FUNCTIONALIZATION OF CARBON NANOTUBES. ChemChemTech, 62(10), 118-123. https://doi.org/10.6060/ivkkt.20196210.5962
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)