MOLECULAR MODELING OF ADSORPTION OF POLLUTANT GASES ON CADMIUM-CONTAINING POLYACRYLONITRILE

  • Marta M. Avilova Environmental and Social Systems of the Southern Federal University
  • Ekaterina A. Mar'yeva Environmental and Social Systems of the Southern Federal University
  • Olga V. Popova Environmental and Social Systems of the Southern Federal University
  • Tat'yana G. Ivanova South-Russian State Technical University named after M.I. Platov
Keywords: polyacrylonitrile, cadmium-containing polyacrylonitrile, molecular modeling, water (oxygen) molecules effect, pollutant gases adsorption, Van der Waals forces

Abstract

The paper presents theoretical studies of the adsorption of pollutant gases on the surface of cadmium-containing polyacrylonitrile (Cd-polyacrylonitrile) in the absence and presence of water molecules and oxygen molecules in the environment. The list of gases to which the Cd-polyacrylonitrile surface may have the highest sensitivity is determined. Nitrogen dioxide, methane, ammonia, sulfur oxide (II), hydrogen sulfide, ozone, carbon monoxide, carbon oxide (II), chlorine were chosen as pollutant gases. The following software packages are used for modeling: HyperChem, Gaussian 09, Сhemoffice 2010. Polyacrylonitrile macromolecule models were obtained from HyperChem, Gaussian 09, from which a pentamer macromolecule was chosen to produce a Cd-polyacrylonitrile cluster. Then, implementing the molecular mechanics method in Сhemoffice 2010, namely in the Chem3D subroutine, the Cd-polyacrylonitrile cluster model is constructed. Further, using the molecular modeling method, the following thermodynamic parameters were determined: «Cd-polyacrylonitrile cluster – gas molecule», «Cd-polyacrylonitrile cluster – oxygen molecule», «Cd-polyacrylonitrile cluster – water molecule», «Cd-polyacrylonitrile cluster – oxygen molecule gas molecule», «Cd-polyacrylonitrile cluster – water molecule – gas molecule». As a result of molecular modeling, it was established that Cd-polyacrylonitrile in the atmospheric air exhibits selective sensitivity to gaseous chlorine and carbon monoxide; in an oxygen-free environment – also to hydrogen sulfide. The results of molecular modeling confirm the previously obtained experimental data on the evaluation of the gas sensitivity of Cd-polyacrylonitrile and indicate the presence of van der Waals forces between the Cd-polyacrylonitrile and the adsorbed gas molecule. The presence or absence of water molecules in atmospheric air should not affect the change in the sensitivity of Cd-polyacrylonitrile to pollutant gases.

References

Karbownik I., Fiedot M., Rac O. Effect of doping polyacrylonitrile fibers on their structural and mechanical properties. Polymer. 2015. V. 75. P. 97–108. DOI: 10.1016/j.polymer.2015.08.015

Wenyu Wang, Yide Zheng, Xin Jin. Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nanofiber membranes. Nano Energy. 2019. V. 56. P. 588–594. DOI: 10.1016/j.nanoen.2018.11.082.

Stergios Logothetidis. Flexible organic electronic devices: Materials, process and applications. Mater. Sci. Eng.: B. 2008. V. 152. N 1–3. P. 96–104. DOI: 10.1016/j.mseb.2008.06.009.

Efimov M.N., Sosenkin V.E., Volfkovich Yu.M. Electrochemical performance of polyacrylonitrile-derived activated carbon prepared via IR pyrolysis. Electrochem.Commun. 2018. V. 96. P. 98-102. DOI: 10.1016/j.elecom.2018.10.016.

Liang Chen, Yinze Zuo, Yu Zhang, Yanmin Gao. A novel CuCo2S4/polyacrylonitrile ink for flexible film supercapacitors. Mater.Lett. 2018. V. 215. P. 268-271. DOI: 10.1016/j.matlet.2017.12.119.

Savest N., Plamus T., Tarasova E. The effect of ionic liquids on the conductivity of electrospun polyacrylonitrile membranes. J. Electrostat. 2016. V. 83. P. 63-68. DOI: 10.1016/j.elstat.2016.07.006.

Kozlov V.V., Karpacheva G.P., Petrov V.S., Lazovskaya E.V. Formation of polyconjugated bonds in polyacrylonitrile by thermal treatment in vacuum. Polymer Sci. Ser. A. 2001. V. 43 (1). P. 20-26.

Laffont L., Monthioux M., Serin V. An EELS study of the structural and chemical transformation of PAN poly-mer to solid carbon. Carbon. 2004. V. 42. N 12-13. P. 2485-2494. DOI: 10.1016/j.carbon.2004.04.043.

Yoshida H., Sato N. Deposition of Acrylonitrile Cluster Ions on Solid Substrates: Thin Film Formation by Intra-cluster Polymerization Products. J. Phys. Chem. B. 2006. V. 110. N 9. P. 4232-4239. DOI: 10.1021/jp0546397.

Semenistaya T.N., Ivanenko A.V. Choice of technological conditions for synthesis of sensing materials based on polyacrylonitrile on flexible substrate. J. Phys.: Conf. Ser. 2018. V. 1016. N 1. P. 014065.

Merdrignac-Conanec O., Bernicot Y., Guyader J. Humidity effect on baseline conductance and H2S sensitivity of cadmium germanium oxynitride thick film gas sensors. Sens. Actuat. B: Chem. 2000. V. 63. N 1-2. P. 86-90. DOI: 10.1016/S0925-4005(00)00302-6.

Ravindra V. Ghorpade, Dong Won Cho, Sung Chul Hong. Effect of controlled tacticity of polyacrylonitrile (co)polymers on their thermal oxidative stabilization behaviors and the properties of resulting carbon films. Car-bon. 2017. V. 121. P. 502-511. DOI: 10.1016/j.carbon.2017.06.015/.

Avilova M.M., Petrov М.М. A study of gas-sensitive properties of cobalt-modified polyacrylonitrile films by the methods of molecular modeling and quantum chemistry. Russ. J. Phys. Chem. B. 2017. V. 11. N 4. P. 618-623. DOI: 10.1134/S1990793117040029.

Nechaev I.V., Vvedensky A.V. Quantum-chemical simulation of the adsorption of chloride ion and water molecules on metals of the I B subgroup. Fizikokhim. Pover. Zashch. Mater. 2009. V. 45. N 2. P. 150-159 (in Russian). Нечаев И.В., Введенский А.В. Квантово-химическое моделирование адсорбции хлорид-иона и молекулы воды на металлах I B подгруппы. Физикохим. пов-ти и защита мат-лов. 2009. Т. 45. № 2. С. 150-159.

Meyer I. Selected chapters of quantum chemistry: proof of theorems and the derivation of formulas. M.: Laboratoriya znaniy. 2017. 387 p. (in Russian). Майер И. Избранные главы квантовой химии: доказательство теорем и вывод формул. М.: Лаборатория знаний. 2017. 387 с.

Burkert U., Ellinger N. Molecular mechanics: translation from English. М.: Mir. 1986. 364 p. (in Russian).

Буркерт У., Эллинджер Н. Молекулярная механика. М.: Мир. 1986. 364 с.

Zaporotskova I.V., Kojitov L.V., Anikeev N.A. Theoretical studies of the structure of the metal-carbon composites on the base of acryle-nitrile nanopolimer. J. Nano Electronic Phys. 2014. V. 6. N 3. P. 03035.

Xinliang Yu, Bing Yi, Zhimin Xie. Prediction of the conformational property for polymers using quantum chemical descriptors. Chemomet. Intell. Labor. Syst. 2007. V. 87. N 2. P. 247-251. DOI: 10.1016/j.chemolab.2007.03.001

Kun Ge, Qichang Yu, Shaohua Chen. Modeling CO2 adsorption dynamics within solid amine sorbent based on the fundamental diffusion-reaction processes. Chem. Eng. J. 2019. V. 364. P. 328-339. DOI: 10.1016/j.cej.2019.01.183.

Masataka Nagaoka, Yusuke Ohta, Haruko Hitomi. Theoretical characterization of coordination space: Adsorption state and behavior of small molecules in nanochanneled metal-organic frameworks via electronic state theory, molecular mechanical and Monte Carlo simulation. Coord. Chem. Rev. 2007. V. 251. N 21–24. P. 2522-2536. DOI: 10.1016/j.ccr.2007.08.016.

Jing Zhang, Yu-xi Liu, Re-Bing Wu. Quantum feedback: theory, experiments, and applications. Phys. Reports. 2017. V. 679. P. 1-60. DOI: 10.1016/j.physrep.2017.02.003.

Chemical Encyclopedic Dictionary. Ed. by I.L. Knunyants. М.: Sovetskaya Entsiklopediya. 1983. P. 231 (in Russian). Химический энциклопедический словарь. Под ред. И.Л. Кнунянц. М.: Советская энциклопедия. 1983. С. 231.

Published
2020-04-16
How to Cite
Avilova, M. M., Mar’yeva, E. A., Popova, O. V., & Ivanova, T. G. (2020). MOLECULAR MODELING OF ADSORPTION OF POLLUTANT GASES ON CADMIUM-CONTAINING POLYACRYLONITRILE. ChemChemTech, 63(4), 49-54. https://doi.org/10.6060/ivkkt.20206304.6008
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)