USING OF ATOMIC LAYER DEPOSITION METHOD FOR OBTAINING THIN FILMS BASED ON LiMn2O4 AND LiFePO4

  • Oksana Yu. Gants National Research Mordovia State University named after N.P. Ogarev
  • Vladimir M. Kashkin National Research Mordovia State University named after N.P. Ogarev
  • Angelina D. Yudina National Research Mordovia State University named after N.P. Ogarev
  • Valentina O. Zhirnova National Research Mordovia State University named after N.P. Ogarev
  • Anna S. Timonina National Research Mordovia State University named after N.P. Ogarev
  • Konstantin N. Nichchev National Research Mordovia State University named after N.P. Ogarev
Keywords: atomic layer deposition, thin films, lithium-ion batteries, lithium-manganese spinels, lithium-iron phosphate

Abstract

An approach to the synthesis of LiFePO4 and LiMn2O4 by atomic layer deposition is proposed and successfully implemented. The main regularities of the process are revealed and the method of synthesis realization is proposed. The following reagents were proposed and used: 2,2,6,6-tetramethylheptan-3,5 - dione of manganese, oxygen, iron (II) chloride, trimethyl phosphate, water and lithium tret-butylate. Nitrogen was used as an inert gas for purging the reactor and as a carrier gas. The influence of process parameters on the synthesis of thin films based on LiFePO4 and LiMn2O4 is described. It has been established that the phase composition of the resulting films is influenced by the time of precursor release and the process temperature. It is concluded that the increase in process temperature has a positive effect on the density of thin films of LiFePO4 and LiMn2O4. The optimum deposition temperature of LiFePO4 and LiMn2O4 is 400 ºC. It was shown that it is possible to regulate the content of each element and phase composition in films based on LiFePO4 and LiMn2O4 by changing the time of precursors release. The optimal time for the release of precursors for the synthesis of LiFePO4 and LiMn2O4 is 4 s under the stated conditions. Of great importance is the time of release of oxidizing agents-4 and 6 s for the deposition of LiFePO4 and LiMn2O4, respectively. The correlation of the layer growth rate per cycle was revealed, which was 0.2 nm/cycle for the synthesis of LiFePO4. The film obtained in the process is X-ray amorphous. To obtain the crystal structure, the films were annealed in argon at a temperature of 800 ºC. The mechanism of interaction of precursors with the substrate surface is studied. The influence of substrate activation on the uniformity of film growth is revealed.

References

Lewis N., Nocera D. Powering the planet: Chemical challenges in solar energy utilization. Proc. Nat. Acad. Sci. U.S.A. 2006. V. 103. N 42. P. 15729-15735. DOI: 10.1073/pnas.0603395103.

Julien C.M., Mauger A., Zaghib K., Groult H. Comparative issues of cathode materials for Li-Ion batteries. Inorganics. 2014. V. 2. N 1. P. 132-154. DOI: 10.3390/in-organics2010132.

Dahn J.R., Fuller E.W., Obrovac M., Yon U. Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells. Sol. St. Ionics. 1994. V. 69. N 3. P. 265-270. DOI: 10.1016/0167-2738(94)90415-4.

Whittongham M.S. Lithium batteries and cathode materials. Mater. Chem. Rev. 2004. V. 104. N 10. P. 4271-4302. DOI: 10.1021/cr020731c.

Zhang J.Z., Zhang L., Schlueter J.A., Redfern P.S., Curtiss L., Amine K. Understanding the redox shuttle stability of 3,5-di-tert-butyl-1,2-dimethoxybenzene for overcharge protection of lithiumion batteries. J. Power Sources. 2010. V. 195. N 15. P. 4957-4962. DOI: 10.1016/j.jpowsour.2010.02.075.

Churikova A.V., Ivanishchev A.V., Ivanishcheva I.A., Sycheva V.O., Khasanova N.R., Antipov E.V. Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques. Electrochim. Acta. 2010. V. 55. N 8. P. 2939-2950. DOI: 10.1016/j.electacta.2009.12.079.

Fan J., Fedkiw P.S. Electrochemical impedance spectra of full cells: Relation to capacity and capacity-rate of rechargeable Li cells using LiCoO2, LiMn2O4, and LiNiO2 cathodes. J. Power Sources. 1998. V. 72. N 2. P. 165-173. DOI: 10.1016/S0378-7753(97)02708-0.

Thackeray M.M., David W.I.F., Bruce P.G., Goodenough J.B. Lithium insertion into manganese spinels. Mater. Res. Bull. 1983. V. 18. N 4. P. 461-472. DOI: 10.1016/0025-5408(83)90138-1.

Sun Y.-K., Oh I.-H., Kim K.Y. Synthesis of spinel LiMn2O4 by the sol−gel method for a cathode-active material in lithium secondary batteries. Ind. Eng. Chem. Res. 1997. V. 36. N 11. P. 4839-4846.

Hon Y.M., Lin S.P., Fung K.Z., Hon M.H. Synthesis and characterization of nano-LiMn2O4 powder by tartaric acid gel process. J. European Ceramic Soc. 2002. V. 22. N 5. P. 653-660. DOI: 10.1016/S0955-2219(01)00382-X.

Medvedeva A.E., Pechen L.S., Makhonina E.V., Rumyantsev A.M., Koshtyal Yu.M., Pervov V.S., Eremenko I.L. Synthesis and electrochemical properties of lithiumion battery cathode materials based on LiFePO4–LiMn2O4 and LiFePO4–LiNi0.82Co0.18O2 composites. Russ. J. Inorg. Chem. 2019. V. 64. P. 829–840. DOI: 10.1134/S003602361907012X.

Nipan G.D., Smirnova M.N., Kop’eva M.A., Nikiforova G.E. Gel combustion synthesis of Li(Ni,Mn,Co,Fe)O2 sol-id solutions. Russ. J. Inorg. Chem. 2019. V. 64. P. 1304–1308. DOI: 10.1134/S0036023619100103.

Fu Y.-P., Lin C.-H., Su Y.-H., Jean J.-H., Wu S.-H. Electrochemical properties of LiMn2O4 synthesized by the microwave-induced combustion method. Ceramics Intern. 2004.

V. 30. N 7. P. 1953-1959. DOI: 10.1016/j.ceramint.2003.12.183.

Patey T.J., B¨uchel R., Nakayama M., Novak P. Electrochemistry of LiMn2O4 nanoparticles made by flame spray pyrolysis. Phys. Chem. Chem. Phys. 2009. V. 11. N 19.

P. 3756. DOI: 10.1039/b821572n.

Zhang Q.-H., Li S.-P., Sun S.-Y., Yin X.-S., Yu J.-G. LiMn2O4 spinel direct synthesis and lithium ion selective adsorption. Chem. Eng. Sci. 2010. V. 65. N 1. P. 169-173. DOI: 10.1016/j.ces.2009.06.045.

Amarilla J.M., Petrov K., Pico F., Avdeev G., Rojo J.M., Rojas R.M. Sucrose-aided combustion synthesis of nanosized LiMn1.99−yLiyM0.01O4 (M=Al3+, Ni2+, Cr3+, Co3+, y=0.01 and 0.06) spinels. J. Power Sources. 2009. V. 191. N 2. P. 591-600. DOI: 10.1016/j.jpowsour.2009.02.026.

Aklalouch M., Rojas R.M., Rojo J.M., Saadoune I., Amarilla J.M. The role of particle size on the electrochemical properties at 25 and at 55 °C of the LiCr0.2Ni0.4Mn1.4O4 spinel as 5V-cathode materials for lithiumion batteries. Electrochim. Acta. 2009. V. 54. N 28. P. 7542-7550. DOI: 10.1016/j.electacta.2009.08.012.

Kamarulzaman N., Yusoff R., Kamarudin N., Shaari N.H., Abdul Aziz N.A., Bustam M.A., Blagojevic N., Elcombe M., Blackford M., Avdeev M., Arof A.K. Investigation of cell parameters, microstructures and electrochemical behaviour of LiMn2O4 normal and nano powders. J. Power Sources. 2009. V. 188. N 1. P. 274-280. DOI: 10.1016/ j.jpowsour.2008.10.139.

Raja M.W., Mahanty S., Basu R.N. Filter paper templated interconnected nanocrystalline LiMn2O4 with high coulombic efficiency and rate capability. J. Mater. Chem. 2009. V. 19. N 34. P. 6161. DOI: 10.1039/b905261e.

Yang M.R., Teng T.H., Wu S.H. LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis. J. Power Sources. 2006. V. 159. N 1. P. 307-311. DOI: 10.1016/ j.jpowsour.2006.04.113.

Arnold G., Garche J., Hemmer R., Ströbele S., Vogler C., Wohlfahrt-Mehrens M. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. J. Power Sources. 2003. V. 119. P. 247-251. DOI: 10.1016/S0378-7753(03)00241-6.

Gants O.Y., Yudina A.D., Zhirnova V.O., Timonina A.S., Lyukshina Y.I., Akhmatova A.A. Synthesis of ruthenium (IV) oxide on tantalum by atomic layer deposition. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. [Russ. J. Chem. & Chem. Tech.]. 2020. V. 63. N 7. Р. 26-30. DOI: 10.6060/ivkkt.20206307.6190.

Published
2020-08-05
How to Cite
Gants, O. Y., Kashkin, V. M., Yudina, A. D., Zhirnova, V., Timonina, A. S., & Nichchev, K. N. (2020). USING OF ATOMIC LAYER DEPOSITION METHOD FOR OBTAINING THIN FILMS BASED ON LiMn2O4 AND LiFePO4. ChemChemTech, 63(9), 77-81. https://doi.org/10.6060/ivkkt.20206309.6177
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)