CLUSTER COMPLEXES OF RHENIUM WITH CARBONYL AND AMINE CONTAINING LIGANDS

  • Minira M. Agahuseynova Azerbaijan State Oil and Industry University
  • Fidan D. Gudratova Azerbaijan State Oil and Industry University
Keywords: synthesis, rhenium, cluster complexes, amine- and carbonyl containing complexes, cyclopentyl amino ketone ligand, cyclohexyl amino ketone ligand

Abstract

Methods for the synthesis of rhenium cluster complexes based on carbonyl and amine containing organic bifunctional ligands have been developed. The structure of the obtained cluster combinations were determined on the basis of IR spectroscopy data, methods of thermogravimetry and elemental analysis. Samples of ligands I and II were obtained by condensation of cyclopentane and cyclohexane carboxylic acids chloroanhydrides with ethylene, followed by the replacement of the chlorine atom by amine groups. To obtain cluster complexes of rhenium with the synthesized ligands, an ultradisperse solution of rhenium in distilled water was prepared in advance. To this end, the rhenium trichloride salt (ReCl3) was dissolved in water and the calculated amount of sodium borohydride in a nitrogen atmosphere was added in portions to the resulting solution with vigorous stirring. Rapidly arising black dispersed nanoparticles of metallic rhenium were not deposited. When organic ligands I and II are added, the corresponding cluster compounds III and IV are formed, which gradually over 30 minutes. precipitated from aqueous solution. The resulting black-brown precipitates were washed with distilled water and dried in a nitrogen atmosphere at a temperature of 35-40 °C. The melting points of the synthesized compounds are determined, which are components for cluster III-195 °С and cluster IV- 212 °С (with decomposition). In the IR spectra of cluster compounds, intense absorption bands were found, which characterize the presence of both a ketone carbonyl group (1718 sm–1, 1720 sm–1) and an amine fragment (2727 sm–1, 2720 sm–1 and 2613 sm–1, 2609 sm–1). The absorption bands of ketone groups in cluster compounds are shifted toward higher frequencies compared to the initial ligands. A similar picture is observed when comparing IR vibrations of C – N bonds in the initial ligands and the corresponding cluster compounds. The results of elemental analysis confirm the structure of cluster compounds and are in complete agreement with the notion that the reduction of rhenium salts with metal hydrides in an aqueous solution forms cluster compounds. Apparently, in this case, the most stable rhenium clusters with a tetrahedral structure are formed. Thermogravimetric analysis made it possible to establish the presence of a peak at a temperature of 318 °С with a mass number of 744.8 c.u. corresponding to the cluster combination of four rhenium atoms. At each stage of decomposition, the experimental mass loss agrees well with the calculated values.

References

Hieber W., Logally H. Über Metallcarbonyle. XLV. Das Rhodium im System der Metallcarbonyle. Ztshr. Anorg Ablgem. Chem. 1943. BD. 251. P. 96. DOI: 10.1002/zaac.19432510110.

Bertrand T.A., Cotton F.A., Dollase W.A. The Metal-Metal Bonded, Polynuclear Complex Anion in CsReCl4. J. Amer. Chem. Soc. 1963. V. 85. P. 1349. DOI: 10.1021/ja00892a029.

Naumov N.G., Ledneva A.Y., Kim S.-J., Fedorov V.E. New trans-Re6S8(CN)4L2-rhenium cluster complexes: syn-theses, crystal structure and properties. J. Cluster Sci. 2009. V. 20. P. 225-239. DOI: 10.1007/s10876-009-0233-x.

Efremova O.A., Brylev K.A., Kozlova O., White M.S., Shestopalov M.A., Noboru Kitamura, Mironov Yu.V., Bauer S., Sutherland A.J. Polymerisable octahedral rhenium cluster complexes as precursors for pho-to/electroluminescent polymers. J. Mater. Chem. 2014. V. 2. P. 8630-8638. DOI: 10.1039/C4TC01643B.

Krasilnikova A.A., Solovieva A.O., Ivanov A.A., Trifonova K.E., Pozmogova T.N., Tsygankova A.R., Smolentsev A.I., Kretov E.I., Sergeevichev D.S., Shestopalov M.A., Mironov Yu.V., Shestopalov A.M., Poveshchenko A.F., Shestopalova L.V. Comprehensive study of hexar-henium cluster complex Na4[{Re6Te8}(CN)6] – In terms of a new promising luminescent and X-ray contrast agent. Nanomed.: Nanotechnol., Biol. Med. 2017. V. 13. N 2. P. 755-763. DOI: 10.1016/j.nano.2016.10.016.

Bauer E.B., Haase A.A., Reich R.M., Crans D.C., Kühn F.E. Organometallic and coordination rhenium compounds and their potential in cancer therapy. Coord. Chem. Rev. 2019. V. 393. P. 79-11. DOI: 10.1016/j.ccr.2019.04.014.

Vishkaee T.S., Fazaeli R, Yousefi M. Theoretical Analysis of Solvent Effect on the NMR Parameters in trans-(NHC)PtI2Py Complex: A Platinum-Based Anticancer Drug. Russ. J. Inorg. Chem. 2019. V. 64. P. 237–241. DOI: 10.1134/S0036023619020062.

Adams R.D., Burjor Captain, Smith M.D., Chad Beddie, Hall M.B. Unsaturated Platinum−Rhenium Cluster Complexes. Synthesis, Structures and Reactivity. J. Am. Chem. Soc. 2007. 129(18). P. 5981-5991. DOI: 10.1021/ja070773o.

Ivanov A.A., Konovalov D.I., Pozmogova T.N., Solovieva A.O., Melnikov A.R., Brylev K.A., Kuratieva N.V., Yanshole V.V., Kaplan Kirakci, Kamil Lang, Cheltygmasheva S.N., Noboru Kitamura, Shestopalova L.V., Mironov Y.V., Shestopalov M.A. Water-soluble Re6-clusters with aromatic phosphine ligands – from syn-thesis to potential biomedical applications. Inorg. Chem. Front. 2019. V. 6. P. 882-892. DOI: 10.1039/C8QI01216D.

Yoichiro Kuninobu, Kazuhiko Takai. Organic Reactions Catalyzed by Rhenium Carbonyl Complexes. Chem. Rev. 2011. 111(3). P. 1938-1953. DOI: 10.1021/cr100241u.

Shestopalov M.A., Kozhomuratov Zh.S., Smolentsev A.I., Mironov Yu.V., Perrin A., Perrin K., Fedorov V.E. The structure of the new octahedral rhenium cluster com-plex is [cis-Ca (OPPh3) 4 (H2O) 2] [{Re6 (μ3-S) 6 (μ3-Br) 2} Br6] · 2CH3CN. J. Siber. Fed. Univ. Khim. 2009. V. 2. P. 81-808 (in Russian).

Verpekin V.V., Kondrasenko A.A., Ergaev R.O., Chudin O.S., Pavlenko N.I., Rubaylo A.I. Phenylvinylidene Clusters Containing ReFePt Metal Cores and Chelate Diphosphine Ligands at the Platinum Atom. J. Siber. Fed. Univ. Khim. 2017. V. 10. P. 239-249 (in Russian). DOI: 10.17516/1998-2836-0021.

Krasilnikova A.A., Shestopalov M.A., Brylev K.A., Kirilova I.A. Prospects of molybdenum and rhenium octahe-dral cluster complexes as X-ray contrast agents. J. Inorg. Biochem. 2015. V. 144. P. 13-17. DOI: 10.1016/j.jinorgbio.2014.12.016.

Wilson J.J., Lippard S.J. Synthetic Methods for the Preparation of Platinum Anticancer Complexes. Chem. Rev. 2014. 114 (8). P. 4470-4495. DOI: 10.1021/cr4004314.

Brylev K.A., Shestopalov M.A., Khripko O.P., Trunova V.A., Zvereva V.V., Wang C.C., Mironov Yu.V., Fedorov V.E. Biodistribution of Rhenium Cluster Complex K4[Re6S8(CN)6] in the Body of Laboratory Rats. Bull. Exp. Biol. Med. 2013. N 6. P. 741-744. DOI: 10.1007/s10517-013-2241-y.

Ivanov A.A., Shestopalov M.A., Khlestkin V.K., Mironov Yu.V. A family of octahedral rhenium cluster complexes trans-[{Re6Q8}(PPh3)4X2] (Q = S or Se, X = Cl, Br or I): Preparation and halide-dependent luminescence properties. Polyhedron. 2014. V. 81. P. 634-638. DOI: 10.1016/j.poly.2014.07.016.

Sergienko V.S., Churakov A.V. Specific Features of Monomeric Octahedral Monooxo d2-Rhenium(V) Com-plexes with Oxygen Atoms of Tridentate Chelating (О, N, N) Ligands (Review). Russ. J. Inorg. Chem. 2019. V. 64. P. 1803–1818. DOI: 10.1134/S0036023619140055.

Ulrich Abram, Roger Alberto. Technetium and rhenium - coordination chemistry and nuclear medical applications. J. Brazil. Chem. Soc. 2006. V. 17. N 8. P. 1486-1500. DOI: 10.1590/S0103-50532006000800004.

Revina A.A., Kuznetsov M.A., Chekmarev A.M. Physicochemical properties of rhenium nanoparticles obtained in reverse micelles. Doklady Chem. 2013. V. 450. N 1. P. 119–121. DOI: 10.1016/j.nucmedbio.2016.08.017.

Demoin D.W., Dame A.N., Minard W.D., Gallazzi F., Seickman G.L., Rold T.L., Bernskoetter N., Fassbender M.E., Hoffman T.J., Deakyne C.A., Jurisson S.S. Monooxorhenium(V) complexes with 222-N2S2 MAMA ligands for bifunctional chelator agents: Syntheses and preliminary in vivo evaluation. Nucl. Med. Biol. 2016. V. 43. N 12. P. 802-811. DOI: 10.1016/j.nucmedbio.2016.08.017.

Zhao Y., Woods J.A., Farrer N.J., Robinson K.S., Pracharova J., Kasparkova J., Novakova O., Li H., Salassa L., Pizarro A.M., Clarkson G.J., Song L., Brabec V., Sadler P.J. Diazido mixed-amine platinum(IV) anticancer complexes activatable by visible-light form novel DNA adducts. Chemistry. 2013. N 19(29). P. 9578-9591. DOI: 10.1002/chem.201300374.

Shtemenko N.I., Zabitskaya E.D., Berzenina O.V., Yegorova D.E., Shtemenko A.V. Liposomal forms of rhenium cluster compounds: enhancement of biological activity. Chem Biodivers. 2008. N 5(8). P. 1660-1667. DOI: 10.1002/cbdv.200890153.

Litvinova Yu.M., Gayfulin Ya.M., van Leusen J., Samsonenko D.G., Lazarenko V.A., Zubavichus Ya.V., Kögerler P., Mironov Yu.V. Metal–organic frameworks based on polynuclear lanthanide complexes and octahedral rhenium clusters. Inorg. Chem. Front. 2019. N 6. P. 1518-1526. DOI: 10.1039/C9QI00339H.

Hille C., Kühn F.E. Cationic rhenium complexes ligated with N-heterocyclic carbenes – an overview. Dalton Trans. 2016. N 45. P. 15-31. DOI: 10.1039/C5DT03641K.

Cahn R.S., Dermer O.C. Introduction to chemical No-menclature. Oxford: Pergamon Press. 1979. 200 р.

Nomenclature of organic chemistry. IUPAC Recommendations and Preffered Names. 2013. 92 (3).

Published
2021-01-01
How to Cite
Agahuseynova, M. M., & Gudratova, F. D. (2021). CLUSTER COMPLEXES OF RHENIUM WITH CARBONYL AND AMINE CONTAINING LIGANDS. ChemChemTech, 64(1), 47-51. https://doi.org/10.6060/ivkkt.20216401.6161
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)