ELECTROCHEMICAL DISPERSION OF GRAPHITE IN 58% NITRIC ACID TO PRODUCE MULTILAYER GRAPHENE OXIDE

  • Elena V. Yakovleva Yuri Gagarin Saratov State Technical University
  • Andrey V. Yakovlev Yuri Gagarin Saratov State Technical University
  • Ivan N. Frolov Yuri Gagarin Saratov State Technical University
  • Anton S. Mostovoy Engels Technolodical Institute (Branch) of Yuri Gagarin Saratov State Technical University
  • Vitaly N. Tseluikin Engels Technolodical Institute (Branch) of Yuri Gagarin Saratov State Technical University
Keywords: graphite, nitric acid, electrochemical synthesis, oxidized graphite, graphene oxide

Abstract

Electrochemical oxidation of graphite powder in 58% HNO3 was studied. Samples of oxidized graphite were obtained with a imparting of the amount of electricity 500, 700, 1500 mAh g-1. The character of the galvanostatic dependencies allows to select a region of the formation of intercalated compounds of graphite prior to the accumulation of quantity of electricity of 500 mA h g-1. It was found that when the quantity of electricity of over 700 mA h g-1 the process of electrochemical peroxidation of intercalated graphite begins with the formation of multilayer graphene oxide, as confirmed by comprehensive studies using X-ray diffraction, scanning electron microscopy, FTIR spectroscopy, laser diffraction. The synthesized multilayer graphene oxide is characterized by the presence of a spectrum of oxygen-containing functional groups, mainly hydroxyl, as well as carboxyl, epoxy and alkoxyl. X-ray images show a peak at 2θ = 11.45° which intensity increases for re-oxidized graphite compounds and also indicate the formation of a multilayer graphene oxide with an interlayer distance of 7.8 Å. The synthesized material in aqueous suspensions under the action of ultrasound is dispersed with a 7-11-fold reduction in particle size. Graphene layers remains layered structure but the degree of their deformation increases, and the thickness of the layers decreases with an increase in the imparted amount of electricity. 

References

Tseluikin V.N., Solov'ova N.D., Gun'kin I.F. Elecdtrodeposition of nickel-fullerene C60 composition coatings. Prot. Met. 2007. V. 43. N 4. P. 388 – 390. DOI: 10.1134/S003317320704012.

Tseluikin V.N., Chubenko I.S, Gun'kin I.F., Pankst'yanov A.Yu. Colloidal dispersion of fullerene C60 free of organic solvents. Russ. J. Appl. Chem. 2006. V. 79. N 2. P. 325 – 326. DOI: 10.1134/S1070427206020315.

Jian Ru Gong. Graphene – Synthesis, Characterization, Properties and Applications. Rijeeka, Croatia: inTechWeb.org. 2011. 184 p.

Hammers W.S., Offman R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958. V. 80 N 6. P. 1339–1339. DOI: 10.1021/ja01539a017.

Dreyer D.R., Jia H.P., Bielawski C.W. Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. Int. Ed. Engl. 2010. V. 49. N 38. P. 6813–6816. DOI: 10.1002/anie.201002160.

Peng Wang, Tao Yao, Bo Sun, Xiaoliang Fan, Sijie Dong, Yun Bai, Yu Shi. A cost-effective method for preparing mechanically stable anti-corrosive superhydrophobic coating based on electrochemically exfoliated grapheme. Colloids Surf., A. 2017. V. 513. P. 396-401. DOI: 10.1016/j.colsurfa.2016.11.002.

Zhiming Tian, Pei Yu, Sean E. Lowe, Tony G. Pandolfo, Thomas R. Gengenbach, Kate. M. Nairn, Jingchao Song, Xin Wang, Yu Lin Zhong, Dan Li. Facile electrochemical approach for the production of graphite oxide with tunable chemistry. Carbon. 2017. V. 112. P. 185-191. DOI: 10.1016/j.carbon.2016.10.098.

Songfeng Pei, Qinwei Wei, Kun Huang, Hui-Ming Cheng, Wencai Ren. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nature Commun. 2018. V. 9. Article number: 145. DOI: 10.1038/s41467-017-02479-z.

Xueqiu You, Jong-Hyeon Chang, Byeong Kwon Ju, James Jungho Pak. An Electrochemical Route to Graphene Oxide. J. Nanosci. Nanotechnol. 2011. V. 11. P. 5965–5968. DOI: 10.1166/jnn.2011.4451.

Jianyun Cao, Pei He, Mahdi A. Mohammed, Xin Zhao, Robert J. Young, Brian Derby, Ian A. Kinloch, Robert A. W. Dryfe. Two-Step Electrochemical Intercalation and Oxidation of Graphite for the Mass Production of Graphene Oxide. J. Am. Chem. Soc. 2017. V. 139. P. 17446−17456. DOI: 10.1021/jacs.7b08515.

Khaled Parvez, Zhong-Shuai Wu, Rongjin Li, Xianjie Liu, Robert Graf, Xinliang Feng, Klaus Müllen. Exfolia-tion of Graphite into Graphene in Aqueous Solutions of Inor-ganic Salts. J. Am. Chem. Soc. 2014. V. 136. P. 6083−6091. DOI: 10.1021/ja5017156.

Gurzeda B., Buchwald T., Nocun M., Bakowicz A., Krawczyk P. Graphene material preparation through thermal treatment of graphite oxide electrochemically synthesized in aqueous sulfuric acid. RSC Advances. 2017. V. 7. P. 19904–19911. DOI: 10.1039/c7ra01678f.

Sean E. Lowe, Ge Shi, Yubai Zhang, Jiadong Qin, Shujun Wang, Alexander Uijtendaal, Jiqing Sun, Lixue Jiang, Shuaiyu Jiang, Dongchen Qi, Mohammad Al-Mamun, Porun Liu, Yu Lin Zhong, Huijun Zhao. Scala-ble Production of Graphene Oxide Using a 3D-Printed Packed-Bed Electrochemical Reactor with a Boron-Doped Di-amond Electrode. ACS Appl. Nano Mater. 2019. V. 2. P. 867–878. DOI: 10.1021/acsanm.8b02126.

Kodepelly Sanjeeva Rao, Jaganathan Sentilnathan, Hsun-Wei Cho, Jih-Jen Wu, Masahiro Yoshimura. Soft Processing of Graphene Nanosheets by Glycine-Bisulfate Ionic-Complex-Assisted Electrochemical Exfoliation of Graphite for Reduction Catalysis. Adv. Funct. Mater. 2015. V. 25. P. 298–305. DOI: 10.1002/adfm.201402621.

Sheng Yang, Martin R. Lohe, Klaus Müllen, Xinliang Feng. New-Generation Graphene from Electrochemical Approaches: Production and Applications. Adv. Mater. 2016. V. 28. P. 6213–6221. DOI: 10.1002/adma.201505326.

Randhir Singh, Chandra Charu. Tripathi Synthesis of Colloidal Graphene by Electrochemical Exfoliation of Graphite in Lithium Sulphate. Mater. Today. 2018 V.5. P. 973–979. DOI: 10.1016/j.matpr.2017.11.173.

Khaled Parvez, Rongjin Li, Sreenivasa Reddy Puniredd, Yenny Hernandez, Felix Hinkel, Suhao Wang, Xinliang Feng, Klaus Mullen. Electrochemically Exfoliated Graphene as Solution-Processable, Highly Conductive Electrodes for Organic Electronics. ACS Nano. 2013. V. 7. N 4. P. 3598-3606. DOI: 10.1021/nn400576v.

Quanzhu Zhou, Yonghong Lu, Haibo Xu. Highyield production of high-quality graphene by novel electrochemical exfoliation at airelectrolyte interface. Mater. Lett. 2019. V. 235. N 15. P. 153-156. DOI: 10.1016/j.matlet.2018.10.016.

Suyun Tian, Siwei Yang, Tao Huang, Jing Sun, Huishan Wang, Xipeng Pu, Linfan Tian, Peng He, Guqiao Ding, Xiaoming Xie. One-step fast electrochemical fabrication of water-dispersible grapheme. Carbon. 2017. V. 111. P. 617-621. DOI: 10.1016/j.carbon.2016.10.044.

Munuera J.M., Paredes J.I., Villar-Rodil S., Martínez-Alonso A., Tascón J.M.D. A simple strategy to improve the yield of graphene nanosheets in the anodic exfoliation of graphite foil. Carbon. 2017. V.115. P. 625-628. DOI: 10.1016/j.carbon.2017.01.038.

Kunfeng Chen, Dongfeng Xue. Preparation of colloidal graphene in quantity by electrochemical Exfoliation. J. Colloid Interface Sci. 2014. V. 436. P. 41–46. DOI: 10.1016/j.jcis.2014.08.057.

Hui Wang, Can Wei, Kaiyi Zhu, Yu Zhang, Chunhong Gong, JianhuiGuo, Jiwei Zhang, Laigui Yu, Jingwei Zhang. Preparation of graphene sheets by electrochemical exfoliation ofgraphite in confined space and their application in transparentconductive films. ACS Appl. Mater. Interf. 2017. V. 9. P. 34456−34466. DOI: 10.1021/acsami.7b09891.

Gurzeda B., Krawczyk P. Potential oscillations affected by the electrochemical overoxidation of graphite in aqueous nitric acid. Electrochim. Acta. 2018. V. 267. P. 102-109. DOI: 10.1016/j.electacta.2018.02.058.

Gurzeda B., Krawczyk P. Electrochemical formation of graphite oxide from the mixture composed of sulfuric and nitric acids. Electrochim. Acta. 2019. V. 310. P. 96-103. DOI: 10.1016/j.electacta.2019.04.088.

Raneen Imad Jibrael, Mustafa K.A. Mohammed. Production of graphene powder by electrochemical exfoliation of graphite electrodes immersed in aqueous solution. Optik. 2016. V. 127. P. 6384–6389. DOI: 10.1016/j.ijleo.2016.04.101.

Yakovlev A.V., Yakovleva E.V., Tseluikin V.N., Krasnov V.V., Mostovoy A.S., Rakhmetulina L.A., Frolov I.N. Electrochemical Synthesis of Multilayer Graphene Oxide by Anodic Oxidation of Disperse Graphite. Russ. J. Electrochem. 2019. V. 55. N 12. P. 1196–1202. DOI: 10.1134/S102319351912019X.

Yakovlev A.V., Yakovleva E.V., Tseluikin V.N., Krasnov V.V., Mostovoy A.S., Vikulova M.A., Frolov I.H., Rakhmetulina L.A. Synthesis of Multilayer Graphene Oxide in Electrochemical Graphite Dispersion in H2SO4. Russ. J. Appl. Chem. 2020. V. 93. N 2. P. 219−224. DOI: 10.1134/S1070427220020093.

Yakovlev A.V., Zabud’kov S.L., Yakovleva E.V., Finaenov A.I. A study of the possibility of anodic oxidation of suspensions formed by dispersed graphite and nitric acid. Russ. J. Appl. Chem. 2006. V. 79. N 10. P. 1600-1604. DOI: 10.1134/S1070427206100077.

Yakovlev A.V., Yakovleva E.V., Zabud’kov S.L., Finaenov A.I. Electrochemical processes on graphite powder electrodes in HNO3 solutions. Russ. J. Appl. Chem. 2010. V. 83. N 5. P. 820−825. DOI: 10.1134/S1070427210050113.

Frolov I.N., Zabudkov S.L., Yakovlev A.V., Lopukhova M.I. Selection of mode of anodic treatment of graphite in a spent nitric acid etching solutionfor producing thermally expanding graphite compounds. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. [ChemChemTech]. 2019. V. 62. N 6. P. 77-83. DOI: 10.6060/ivkkt.20196206.5873.

Mostovoy A.S., Yakovlev A.V., Lopukhova M.I. Direc-tional control of physico-chemical and mechanical properties of epoxide composites by the addition of graphite-graphene structures. Polym.-Plast. Tech. Mat. 2020. V. 59. N 8. P. 874–883. DOI: 10.1080/25740881.2019.1698615.

Published
2021-03-20
How to Cite
Yakovleva, E. V., Yakovlev, A. V., Frolov, I. N., Mostovoy, A. S., & Tseluikin, V. N. (2021). ELECTROCHEMICAL DISPERSION OF GRAPHITE IN 58% NITRIC ACID TO PRODUCE MULTILAYER GRAPHENE OXIDE. ChemChemTech, 64(3), 59-65. https://doi.org/10.6060/ivkkt.20216403.6324
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)