MULTI-RESPONSE OPTIMISATION OF ELECTRODEPOSITION OF NANO-CRYSTALLINE COMPOSITE COATINGS Cr-Cr3P IN STATU NASCENDI FROM TRIVALENT CHROMIUM-BATHS

  • Evgeny G. Vinokurov D. Mendeleev University of Chemical Technology of Russia
  • Tatiana F. Burukhina D. Mendeleev University of Chemical Technology of Russia
  • Ekaterina Yu. Napedenina Plekhanov Russian University of Economics
Keywords: amorphous, nanocrystalline, experiment design, composite coatings, alloy, chromium baths, chromium sulfate, phosphide, phosphorus, optimization, chrome plating, electrodeposition, in statu nascendi

Abstract

In this paper the effect of parameters such as current density, temperature, electrolytic bath pH and concentration of chromium sulfate and sodium hypophosphite on the electrodeposition process of the Cr-P alloys was investigated. Chemical composition of the coatings was evaluated by scanning electron microscopy and X-ray diffraction. Experimental design 25-1 central composite design was used to evaluate the chemical composition of alloys, current efficiency and the appearance of coatings as well as to optimize the electrodeposition process of the alloy using Response Surface Methodology associated with experimental design. The Harrington desirability function was applied for optimization. The optimal composition of bath (in g/l) and electrolysis conditions are proposed: Cr2(SO4)3·6H2O – 285, Al2(SO4)3·12H2O – 120, Na2SO4 – 50, NaH2PO2·H2O – 20, CO(NH2)2 – 70, рН – 1.3, temperature – 35 ºС, current density – 46 А/dm2. An acceptable current efficiency 13-14 % was observed for an alloy obtained under optimal conditions of 46 A/dm2, 35 °C and pH 1.3 from an electrolyte of optimal composition. Under these conditions, the coating contained 16 wt.% phosphorus. The alloys were X-ray amorphous at a phosphorus content of about 6 wt.%. When the phosphorus content was 16 wt.% the alloys became nanocrystalline and the chromium phosphide – Cr3P phase was released, which can be seen from the peaks on X-ray diffractograms. This indicates the formation of Cr-Cr3P nanocrystalline composite coatings under nucleation conditions (in Statu Nascendi). Therefore, the results of this work show the importance of using optimization techniques to obtain metallic coatings with controlled properties for different types of applications.

References

Vinokurov E.G., Kudryavtsev V.N., Bondar V.V. Certain Laws of the Electrodeposition of a Chromium-Phosphorus Alloy. Protect. Met. 1992. V. 27. N 3. P. 363-367.

Vinokurov E.G., Kudryavtsev V.N., Bondar' V.V., Borsh E. Corrosion and Protective Properties of the Cr-P Metal Coatings. Protect. Met. 1992. V. 28. N 4. P. 659-664.

Zeng Z., Liang A., Zhang J. Electrochemical Corrosion Behavior of Chromium-Phosphorus Coatings Electrodeposited from Trivalent Chromium Baths. Electrochim. Acta. 2008. V. 53. N 24. P. 7344-7349. DOI: 10.1016/j.electacta.2008.03.081.

Kuznetsov V.V., Vinokurov E.G., Telezhkina A.V., Fila-tova E.A. Electrodeposition of Corrosion-Resistant Cr–P and Cr–P–W Coatings from Solutions Based on Compounds of Trivalent Chromium. J. Solid State Electrochem. 2019. V. 23. N 8. P. 2367-2376. DOI: 10.1007/s10008-019-04347-w.

Li B., Lin A., Gan F. Preparation and Characterization of Cr-P Coatings by Electrodeposition from Trivalent Chromium Electrolytes using Malonic Acid as Complex. Surf. Coat. Technol. 2006. V. 201. N 6. P. 2578-2586. DOI: 10.1016/j.surfcoat.2006.05.001.

Zhang J., Gu C., Tong Y., Gou J., Wang X., Tu J. Mi-crostructure and Corrosion Behavior of Cr and Cr-P Alloy Coatings Electrodeposited from a Cr(III) Deep Eutectic Sol-vent. RSC Advances. 2015. V. 5. N 87. P. 71268-71277. DOI: 10.1039/c5ra13056e.

Suarez O.J., Olaya J.J., Suarez M.F., Rodil S.E. Corrosion Resistance of Decorative Chromium Films obtained from Trivalent Chromium Solutions. J. Chilean Chem. Soc. 2012. V. 57.

N 1. P. 977-982. DOI: 10.4067/S0717-97072012000100005.

Mahdavi S., Allahkaram S.R., Heidarzadeh A. Characteristics and Properties of Cr Coatings Electrodeposited from Cr(III) Baths. Mater. Res. Express. 2019. V. 6. N 2. P. 026403. DOI: 10.1088/2053-1591/aaeb4f.

Ramezani-Varzaneh H.A., Allahkaram S.R., Isakhani-Zakaria M. Effects of Phosphorus Content on Corrosion Behavior of Trivalent Chromium Coatings in 3.5 Wt.% NaCl Solution. Surf. Coat. Technol. 2014. V. 244. P. 158-165. DOI: 10.1016/j.surfcoat.2014.02.002.

Kuznetsov V.V., Telezhkina A.V., Demakov A.G., Batalov R.S. Electrodeposition of Corrosion-Resistant Cobalt-Chrome-Tungsten Alloy from Dimethylformamide Bath. Galvanotekh. Obr. Pov. 2017. V. 25. N 1. P. 16–22 (in Rus-sian). DOI: 10.47188/0869-5326_2017_25_1_16

Telezhkina A.V., Kuznetsov V.V., Filatova E.A., Nekrasova N.E., Zhulikov V.V., Kolesnikov V.A. Corrosion and Physical-Mechanical Properties of Cr–P–W Alloy obtained by Electrodeposition from Water–Dimethylformamide Electrolytes. Protect. Met. Phys. Chem. Surf. 2019. V. 55. N 6. P. 1134-1141. DOI: 10.1134/S2070205119060315.

Demaree J.D. Chemical and Structural Effects of Phospho-rus on the Corrosion Behavior of Ion Beam Mixed Fe-Cr-P Alloys. J. Electrochem. Soc. 1993. V. 140. N 2. P. 331-343. DOI: 10.1149/1.2221047.

Chanda U.K., Padhee S.P., Pathak A.D., Roy S., Pati S. Effect of Cr Content on the Corrosion Resistance of Ni–Cr–P Coatings for PEMFC Metallic Bipolar Plates. Mater. Renewabl Sustainable Energy. 2019. V. 8. N 4. 20. DOI: 10.1007/s40243-019-0158-8.

Chanda U.K., Behera A., Roy S., Pati S. Evaluation of Ni-Cr-P Coatings Electrodeposited on Low Carbon Steel Bipolar Plates for Polymer Electrolyte Membrane Fuel Cell. Internat. J. Hydrogen Energy. 2018. V. 43. N 52. P. 23430-23440. DOI: 10.1016/j.ijhydene.2018.10.218.

Bakanov V.I., Nesterova N.V., Yakupov A.A. Features of Electroplating of Nanocrystalline Chromium Coatings from Electrolytes Based on Cr(III). Protect. Met. Phys. Chem. Surfaces. 2017. V. 53. N 3. P. 426-432. DOI: 10.1134/S2070205117030054.

Vinokurov E.G., Kuznetsov V.V., Bondar' V.V. Aqueous Solutions of Cr(III) Sulfate: Modeling of Equilibrium Composition and Physicochemical Properties. Rus. J. Coord. Chem. 2004. V. 30. N 7. P. 496-504. DOI: 10.1023/B:RUCO.0000034791.29424.1b.

Vinokurov E.G., Demidov A.V., Bondar' V.V. Physico-chemical Model for Choosing Complexes for Chromium-Plating Solutions Based on Cr(III) Compounds. Rus. J. Coord. Chem. 2005. V. 31. N 1. P. 14-18. DOI: 10.1007/s11173-005-0027-0.

Vinokurov E.G. Thermodynamic Probability Model of Ligand Selection in Solutions Designed for Electrodeposition of Alloys and Multivalent Metals. Protect. Met. Phys. Chem. Surfaces. 2010. V. 46. N 5. P. 615-619. DOI: 10.1134/S2070205110050205.

Leimbach M., Tschaar C., Schmidt U., Bund A. Electro-chemical Characterization of Chromium Deposition from Trivalent Solutions for Decorative Applications by EQCM and Near-Surface pH Measurements. Electrochim. Acta. 2018. V. 270. P. 104-109. DOI: 10.1016/j.electacta.2018.03.011.

Ziyadullaev M.E., Karimov R.K., Zukhurova G.V., Ab-durazakov A.S., Sagdullaev S.S. Synthesis Optimization of 6-Nitro-3,4-Dihydroquinazoline-4-One. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. [ChemChemTech]. 2020.

V. 63. N 7. P. 48-53. DOI: 10.6060/ivkkt.20206307.6145.

Gokzhaev M.B., Morgunov A.V., Skopintsev V.D. Opti-mizing Solution Composition for the Chemical Deposition of Nickel-Copper-Phosphorus Alloys. Inorg. Materials. 2008. V. 44. N 12. P. 1319-1321. DOI: 10.1134/S0020168508120108.

Myasnikov S.K., Kulov N.N. Modeling the Separation of Oil Sand. Theor. Found. Chem. Eng. 2017. V. 51. N 1. P. 1-11. DOI: 10.1134/S0040579517010146.

Katirci R. Statistical Optimisation of Trivalent Chromium Bath and Characterisation of Coating Defects. Surf. Eng. 2015. V. 31. N 6. P. 465-471. DOI: 10.1179/1743294415Y.0000000013.

Oliveira J.A.M., Raulino A.M.D., Raulino J.L.C., Cam-pos A.R.N., Prasad S., de Santana R.A.C. Effect of Current Density and pH in Obtaining the Ni-Fe Alloy by Elec-trodeposition. Revista Materia. 2017. V. 22. № 1. P. e11773. DOI: 10.1590/S1517-707620170001.0105.

Poroch-Seritan M., Cretescu I., Cojocaru C., Amariei S., Suciu C. Experimental design for modelling and multi-response optimization of Fe-Ni electroplating process. Chem. Eng. Res. Design. 2015. V. 96. P. 138-149. DOI: 10.1016/j.cherd.2015.02.014.

De J., Biswas N., Rakshit P., Sen R. S., Oraon B., Majumdar G. Computation and Optimisation of Electroless Ni-Cu-P Coating using Evolutionary Algorithms. ARPN J. Eng. Appl. Sci. 2015. V. 10. N 5. P. 2273-2283.

Oliveira J.A.M., de Almeida A.F., Campos A.R.N., Prasad S., Alves J.J.N., de Santana R.A.C. Effect of Current Density, Temperature and Bath pH on Properties of Ni–W–Co Alloys obtained by Electrodeposition. J. Alloys Comp. 2021. V. 853. P. 157104. DOI: 10.1016/j.jallcom.2020.157104.

Oliveira A.L.M., Costa J.D., de Sousa M.B., Alves J.J.N., Campos A.R.N., Santana R.A.C., Prasad S. Studies on electrodeposition and characterization of the Ni-W-Fe alloys coatings. J. Alloys Comp. 2015. V. 619. P. 697-703. DOI: 10.1016/j.jallcom.2014.09.087.

Vinokurov E.G., Kudryavtsev V.N. Features of the Preparation of Chromium-Plating Electrolytes Based on Compounds of Chromium(III). Protect. Metals. 1992. V. 28. N 2. P. 255-258.

Vinokurov E.G., Kudryavtsev V.N. Procedure Peculiarities in Preparing Electrolyte on Cr(III) Base. Zashchita Metallov. 1992. V. 28. N 2. P. 331-334 (in Russian).

Midi H., Aziz N.A. Augmented Desirability Function for Multiple Responses with Contaminated Data. J. Eng. Appl. Sci. 2018. V. 13. N 16. P. 6626-6633. DOI: 10.3923/jeasci.2018.6626.6633.

Muradova P.A., Zul’fugarova S.M., Shakunova N.V., Guseinova E.M., Askerova A.I., Litvishkov Y.N. Evalua-tion of the Performance of Catalysts for Joint Deep Oxidation of Hydrocarbons and Carbon Monoxide Under the Ac-tion of UHF Radiation. Rus. J. Appl. Chem. 2017. V. 90. N 7. P. 1130-1135. DOI: 10.1134/S1070427217070163.

Published
2021-03-22
How to Cite
Vinokurov, E. G., Burukhina, T. F., & Napedenina, E. Y. (2021). MULTI-RESPONSE OPTIMISATION OF ELECTRODEPOSITION OF NANO-CRYSTALLINE COMPOSITE COATINGS Cr-Cr3P IN STATU NASCENDI FROM TRIVALENT CHROMIUM-BATHS. ChemChemTech, 64(3), 73-81. https://doi.org/10.6060/ivkkt.20216403.6341
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)