CATALYTIC CONVERSION OF ETHYLENE ON SYSTEMS BASED ON THRICHLOROTRIS-(TETRAHYDROFURANATE)CHROMIUM(III) WITH SOS-TYPE LIGANDS IN COMBINATION WITH VARIOUS ORGANOALUMINUM COCATALYSTS
Abstract
This work presents the results of studying the behavior of catalytic systems formed on the basis of trichlorotris-(tetrahydrofuranate)chromium(III) in the presence of sulfur-containing tridentate SOS-type ligands and activated by various organoaluminum compounds. In the formation of catalytic systems, the following compounds were used: SOS-type ligands - bis-(2-methylthioethyl) ether, bis-(2-ethylthioethyl) ether and bis-(2-phenylthioethyl) ether, organoaluminum compounds - triethylaluminum, triisobutylaluminum, tributylaluminum and methylaluminoxane. In the course of test experiments aimed at choosing an activator at a temperature of 40 °C and an ethylene pressure of 2 MPa, the best results were obtained for triethylaluminum. Therefore, further experiments on the catalytic conversion of ethylene were carried out only with this activator. To study the effect of the reaction temperature and ethylene pressure in the reaction zone, catalytic systems of the trichlorotris-(tetrahydrofuranate)chromium(III)/ligand/triethylaluminum composition were studied in the temperature range from 40 to 80 °C and an ethylene pressure of 2 - 3 MPa with a molar ratio of components Cr : L : AlEt3 = 1 : 1 : 20. As a result of studies, it was shown that in all cases when using tridentate ligands of the SOS type, the catalytic systems formed by us showed a tendency not only to polymerization, but also to oligomerization of ethylene. The best results in the field of ethylene oligomerization into hexenes were shown by the system of the composition trichlorotris-(tetrahydrofuranate)chromium(III) / bis-(2-methylthioethyl) ether/triethylaluminum, in which the content of the hexene fraction is 54 - 55 wt.%, while the selectivity to hexene-1 reaches 88 - 89%.
References
Plaksunov T.K., Belov G.P., Potapov S.S. Higher linear α-olefins and ethylene copolymers based on them. Pro-duction and application. Chernogolovka: RIO IPCP RAS. 2008. 292 p. (in Russian).
Belov G.P., Matkovsky P.E. Processes for the production of higher linear α-olefins. Petrol. Chem. 2010. V. 50. N 4. P. 283-289. DOI: 10.1134/S0965544110040055.
McGuinness D.S. Olefin oligomerizatoin via metallacycles: dimerization, trimerization, tetramerization, and beyond. Chem. Rev. 2011. V. 111. N 3. P. 2321-2341. DOI: 10.1021/cr100217q.
Agapie T. Selective ethylene oligomerization: recent ad-vances in chromium catalysis and mechanistic investigation. Coord. Chem. Rev. 2011. V. 255. N 7-8. P. 861-880. DOI: 10.1016/j.ccr.2010.11.035.
van Leeuwen P.W.N.M., Clement N.D., Tschan M.J.L. New processes for the selective production of 1-octene. Coord. Chem. Rev. 2011. V. 255. N 13-14. P. 1499-1517. DOI: 10.1016/j.ccr.2010.10.009.
Belov G.P. Tetramerization of ethylene to octane-1 (a review). Petrol. Chem. 2012. V. 52, N 3. P. 139-154. DOI: 10.1134/S0965544112030036
Bryliakov K.P., Talsi E.P. Erontiers of mechanistic studies of coordination polymerization and oligomerization of α-olefins. Coord. Chem. Rev. 2012. V. 256. N 23-24. P. 2994-3007. DOI: 10.1016/j.ccr.2012.06.023.
Otero A., Fernandez-Baeza J., Lara-Sanchez A., Sanchez-Barba L.F. Metal complexes with heteroscorpionate ligands based on the bis(pyrazol-1-yl)methane moi-ety: Catalytic chemistry. Coord. Chem. Rev. 2013. V. 257. N 11-12. P. 1806-1868. DOI: 10.1016/j.ccr.2013.01.027.
Sa S., Lee S.M., Kim S.Y. Chromium-based ethylene tetramerization with diphosphinoamines bearing pendent amine donors. J. Mol. Catal. A.: Chem. 2013. V. 378. P. 17-21. DOI: 10.1016/j.molcata.2013.05.015.
Stennnett T.E., Hey T.W., Ball L.T., Flynn S.R., Rad-cliffe J.E., McMullin C.L., Wingad R.L., Wass D.F. N,N-diphospholylamines – a new family of ligands for highly active, chromium-based, selective ethene oligo-merisation catalysts. Chem. Cat. Chem. 2013. V. 5. N 10. P. 2946-2954. DOI: 10.1002/cctc.201300306.
Shao H., Li Y., Gao X., Cao C., Tao Y., Lin J., Jiang T. Microporous zeolite supported Cr(acac)3/PNP catalysts for ethylene tetramerization: Influence of supported pat-terns and confinement on reaction performance. J. Mol. Catal. A: Chem. 2014. V. 390. P. 152-158. DOI: 10.1016/j.molcata.2014.03.020.
Suttil J.A., Wasserscheid P., McGuinness D.S., Gardiner M.G., Evans S.J. A survey of pendant donor-functionalised (N,O) phosphine ligands for Cr-catalysed ethylene tri- and tetramerization. Catal. Sci. Technol. 2014. V. 4. P. 2574-2588. DOI: 10.1039/C4CY00457D.
Zhou Y., Wu H., Xu S., Zhang X., Shi M., Zhang J. Highly active chromium-based selective ethylene tri-/tetramerization catalysts sup-ported by PNPO phosphazane ligands. Dalton Trans. 2015. V. 44. P. 9545-9550. DOI: 10.1039/C5DT00801H.
Wang T., Gao X., Shi P., Pei H., Jiang T. Mixed aluminoxanes: efficient cocatalysts for bisphos-phineamine/Cr(III) catalyzed ethylene tetramerization to-ward 1-octene. Appl. Petrochem. Res. 2015. V. 5. P. 143-149. DOI: 10.1007/s13203-015-0103-4.
Alferov K.A., Babenko I.A., Belov G.P. New catalytic systems on the basis of chromium compounds for selec-tive synthesis of 1-hexene and 1-octene. Petrol. Chem. 2017. V. 57. P. 1-30. DOI: 10.7868/S0028242117010026.
Bariashir C., Huang C., Solan G.A., Sun W.-H. Recent advances in homogeneous chromium catalyst design for ethylene tri-, tetra-, oligo- and polymerization. Coord. Chem. Rev. 2019. V. 385. P. 208-229. DOI: 10.1016/j.ccr.2019.01.019.
McGuinness D.S., Wassercaheid P., Keim W., Morgan D., Dixon J.T., Bollmann A., Maumela H., Hess F., Englert U. First Cr(III)–SNS complexes and their use as highly efficient catalysts for the trimerization of ethylene to 1-hexene. J. Am. Chem. Soc. 2003. V. 125, N 18. P. 5272-5273. DOI: 10.1021/ja034752f.
Temple C.N., Gambarotta S., Korobkov I., Duchateau R. New insight into the role of the metal oxidation state in controlling the selectivity of the Cr-(SNS) ethylene trimerization catalyst. Organometallics. 2007. V. 26. N 18. P. 4598-4603. DOI: 10.1021/om700452u.
Mohamadnia Z., Ahmadi E., Haghighi M.N., Salehi-Mobarakeh H. Synthesis and optimization of ethylene trimerization using [bis-(20dodecylsulfanyl-ethyl)-amine]CrCl3 catalyst. Catal. Lett. 2011. V. 141. P. 474-480. DOI: 10.1007/s10562-010-0492-z.
Ahmadi E., Mohamadnia Z., Haghighi M.N. High productive ethylene trimerization catalyst based on CrCl3/SNS ligands. Catal. Lett. 2011. V. 141. P. 1191-1198. DOI: 10.1007/s10562-011-0594-2.
Albahily K., Gambarotta S., Duchateau R. Ethylene oligomerization promoted by a silylated-SNS chromium systems. Organometallics. 2011. V. 30. N 17. P. 4655-4664. DOI: 10.1021/om200505a.
Albahily K., Shaikh Y., Ahmed Z., Korobkov I., Gambarotta S., Duchateau R. Isolation of a self-activating ethylene trimerization catalyst of a Cr-SNS system. Organometallics. 2011. V. 30. N 15. P. 4159-4164. DOI: 10.1021/om2004699.
Moulin J.O., Evans J., McGuinness D.S., Reid G., Rucklidge A.J., Tooze R.P., Tromp M. Probing the ef-fects of ligand structure on activity and selectivity of Cr(III) complexes for ethylene oligomerisation and polymerization. Dalton Trans. 2008. V. 9. P. 1177–1185. DOI: 10.1039/B716078J.
Levanova E.P., Vilms A.I., Bezborodov V.A., Babenko I.A., Sosnovskaya N.G., Istomina N.V., Albanov A.I., Russavskaya N.V., Rozentsveig I.B. Synthesis of poly-dentate chalcogen-containing ligands using the system hydrazine hydrate-base. Russ. J. Gen. Chem. 2017. V. 87. N 3. P. 396-401. DOI: 10.1134/S1070363217030069.