НАУЧНЫЕ МЕТОДЫ ИНЖИНИРИНГА ЭНЕРГОРЕСУРСОЭФФЕКТИВНЫХ ИНТЕНСИВНЫХ ХИМИКО-ТЕХНОЛОГИЧЕСКИХ СИСТЕМ В УСЛОВИЯ ЦИФРОВОЙ ЭКОНОМИКИ
Аннотация
Кратко изложена история возникновения и сущность нового научного направления в химической технологии «Инжиниринг химико-технологических систем». Описаны виды инжиниринга на этапах жизненного цикла химико-технологических систем. Изложена общая характеристика принципов и методов интенсификации химико-технологических процессов и химико-технологических систем. Приведена краткая характеристика научно-обоснованных способов и приемов энергоресурсосбережения в химическом комплексе. Изложена краткая характеристика принципов автоматизированного синтеза оптимальных энергоресурсоэффективных экологически безопасных химико-технологических систем. Описано применение основных концепций логистики ресурсоэнергоэнергосбережения в инжиниринге энергоресурсоэффективных экологически безопасных химико-технологических систем и цепей поставок. Кратко описаны методы эколого-экономической оптимизации химико-технологических систем, цепей поставок и систем газоснабжения химического и нефтегазохимического комплекса. Изложено применение методов оптимизации показателей надежности, цифровизированного управления рисками и безопасностью при инжиниринге энергоресурсоэффективных химико-технологических систем. Обоснована важность совершенствования многоуровневой подготовки кадров по направлению «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии». Подробно описаны приоритетные направления научных исследований по инжинирингу энергоресурсоэффективных химических технологий и химико-технологических систем, важнейшими из которых являются: методы интенсификации, комбинирования и минитюаризации химико-технологических процессов; методы цифровизированного инжиниринга и логистического управления эксплуатацией энергоресурсоэффективных экологически безопасных наукоемких химико-технологических систем и цепей поставок предприятий химического, нефтегазохимического, биохимического, фармацевтического и химико-металлургического комплекса; методы и способы рационального природопользования с широким применением возобновляемых природных ресурсов; методы комбинированной энергоресурсоэффективной экологически безопасной переработки промышленных и коммунальных бытовых отходов и стоков; методы цифровизированного инжиниринга безотходных природоподобных химико-технологических процессов и химико-технологических систем и инжиниринг «зелёных» цепей поставок в реальном секторе экономики и др.
Литература
Meshalkin V.P. Energy-saving technology performance and efficiency indexes. Chem. Eng. Trans. 2009. V. 18 P. 953-958. DOI: 10.3303/CET0918156.
Grossmann I.E., Harjunkoski I. Process Systems Engineering: Academic and Industrial Perspectives. Comput. Chem. Eng. 2019. V. 126. N 12. P. 474-484. DOI: 10.1016/j.compchemeng.2019.04.028.
Meshalkin V.P. Resource- and Energy-Efficient Energy Supply and Waste Minimization Techniques for Refiner-ies: Theoretical Fundamentals and Best Practices. M.: Genuya: Khimiya. 2009. 393 p. (in Russian).
Meshalkin V.P., Tovazhnyansky L.L., Kapustenko P.A. Fundamentals of Energy-Efficient Environmentally Friendly Refining Technologies. Khar'kov: NTU «Khar'kovskiy politekhnicheskiy institut». 2011. 616 p. (in Russian).
Kafarov V.V., Meshalkin V.P. Analysis and Synthesis of Chemical Process Systems. М.: Khimiya. 1991. 432 p. (in Russian).
Meshalkin V.P. Introduction to the Engineering of Energy and Resource Saving Chemical Process Systems. М.: Genuya: Mendeleyev University of Chemical Technology of Russia. 2020. 212 p. (in Russian).
Meshalkin V.P., Dli M.I. Logistics and Competitiveness Management of Petrochemical Enterprises. М.: Genuya: Khimiya. 2010. 452 p. (in Russian).
European Roadmap for process Intensification URL: https://efce.info/efce_media/-p-531.pdf [Retrieved 21.01.2021].
Harmsen J. Process intensification in the petrochemicals industry: Drivers and hurdles for commercial implementation. Chem. Eng. Proc.: Process Intensification. 2010. V. 49. P. 70-73. DOI: 10.1016/j.cep.2009.11.009.
Becht S., Franke R., Geißelmann A., Hahn H.A. An industrial view of process intensification. Chem. Eng. Proc.: Process Intensification. 2009. V. 48. P. 329-332. DOI: 10.1016/j.cep.2008.04.012.
Frerich J. Keil. Process Intensification. Rev. in Chem. Eng. 2018. V. 34 N 2. P. 135 –200. DOI: 10.1515/revce-2017-0085.
Sitter S., Chen Q., Grossmann I.E. An Overview of Process Intensification Methods. Curr. Opinion in Chem. Eng. 2019. N 25. P. 87-98. DOI: 10.1016/j.coche.2018.12.006.
Dovi M.-S., Meshalkin V.P. Mathematical methods for the multi-criteria optimization of structure and management of energy efficient gas supply chains. Theor. Found. Chem. Eng. 2017. V. 51. P. 1080-1091. DOI: 10.1134/S0040579517060033.
Meshalkin V.P. Expert Systems in Chemical Engineering: Fundamentals of Theory, Development and Application Experience. М.: Khimiya. 1995. 368 p. (in Russian).
Meshalkin V.P., Dovi V., Marsanich A. Industrial Logistics Principles. M.: Mendeleev University of Chemical Technology of Russia. 2002. 722 p. (in Russian).
Meshalkin V.P., Dovi V., Marsanich A. Chemical Supply Chain Management Strategy and Sustainable Devel-opment. M.: Mendeleev University of Chemical Technology of Russia. 2003. 542 p. (in Russian).
Dam J. Van. Planning of optimum production from a natural gas field. J. Inst. Petrol. 1968. V. 54. P. 55-67.
Furey B.P. A sequential quadratic programming-based algorithm for optimization of gas networks. Automatica. 1993. V. 29. N 4. P. 1439-1450. DOI: 10.1016/0005-1098(93)90008-H.
De Wolf D., Smeers Y. Optimal dimensioning of pipe networks with application to gas transmission networks. Oper. Res. 1996. V. 44. N 4. P. 596. DOI: 10.1287/opre.44.4.596.
Meshalkin V.P., Kokhov T.A., Gartman T.N., Korelstein L.B. Heuristic Topological Decomposition Algorithm for Optimal Energy-Resource-Efficient Routing of Complex Process Pipeline Systems. Doklady Chem. 2018. V. 482. N 2. P. 246-250. DOI: 10.1134/S0012500818100087.
De Wolf D., Smeers Y. The gas transmission problem solved by an extension of the simplex algorithm. Manag. Sci. 2000. V. 46. N 11. P. 1454-1465. DOI: 10.1287/mnsc.46.11.1454.12087.
Van den Heever S.A., Grossmann I.E., Vasantharajan S., Edwards K.A. A lagrangean decomposition heuristic for the design and planning of offshore hydrocarbon field infrastructures with complex economic objectives. Indust. Eng. Chem. Res. 2001. V. 40. N 2857-2875. DOI: 10.1021/ie000755e.
Ortíz-Gómez A., Rico-Ramirez V., Hernández-Castro S. Mixed-integer multiperiod model for the planning of oilfield production. Comput. Chem. Eng. 2002. V. 26. P. 703-712. DOI: 10.1016/S0098-1354(01)00778-5.
Martin A., Möller M., Moritz S. Mixed integer models for the stationary case of gas network optimization. Mathem. Progr. 2006. V. 105. P. 563-582. DOI: 10.1007/s10107-005-0665-5.
Nimmanonda P., Uraikul V., Chan C.W., Tonti-wachwuthikul P. Computeraided simulation model for natural gas pipeline network system operations. Indust. Eng. Chem. Res. 2004. V. 43. P. 990. DOI: 10.1021/ie030268+.
Barragán-Hernández V., Vázquez-Román R., Rosales-Marines L., García-Sánchez F.A. A strategy for simula-tion and optimization of gas and oil production. Comput. Chem. Eng. 2005. V. 30. N 2. P. 215-227.
Meshalkin V.P., Chionov A.M., Kazak A.S., Aristov V.M. A computer model of the nonstationary gas flow in a long multilayer-insulated high-pressure subsea gas pipeline. Doklady Chem. 2016. V. 469. N 2. P. 241-244. DOI: 10.1134/S0012500816080048.
Meshalkin V.P., Chionov A.M., Kazak A.S., Aristov V.M. Applied computer model of the non-stationary gas flow in a long multilayer-insulated high-pressure subsea gas pipeline. Doklady Chem. 2016. V. 470. N 1. P. 279-282. DOI: 10.1134/S0012500816090020.
Goel V.V., Grossmann I.E., El-Bakry A.S., Mulkay E.L. A novel branch and bound algorithm for optimal development of gas fields under uncertainty in reserves. Comput. Chem. Eng. 2006. V. 3. P. 1076-1092. DOI: 10.1016/j.compchemeng.2006.02.006.
Kabirian A., Hemmati M.R. A strategic planning model for natural gas transmission networks. Energy Policy. 2007. V. 35. P. 5656-5670. DOI: 10.1016/j.enpol.2007.05.022.
Wu Y., Lai K.K., Liu Y. Deterministic global optimisation approach to steady-state distribution gas pipeline networks (In special issue: Optimization and Control Applications). Optim. Eng. 2007. V. 8. N 3. P. 259-275. DOI: 10.1007/s11081-007-9018-y.
Floudas C.A., Aggarwal A., Ciric A.R. Strategies for Overcoming Uncertainties In Heat Exchanger Network Synthesis. Comput. Chem. Eng. 1989. V. 13. N 10. P. 1117-1132. DOI: 10.1016/0098-1354(89)87016-4.
Osiadacz A.J. Steady state optimisation of gas networks. Arch. Min. Sci. 2011. V. 56. P. 335-352.
Osiadacz A.J., Chaczykowski M. Dynamic Control for Gas Pipeline Systems. Arch. Min. Sci. 2016. V. 61. N 1. P. 69-82. DOI: 10.1515/amsc-2016-0006.
Jonsbråten T.W. Oil field optimization under price uncertainty. J. Operat. Res. Soc. 1998. V. 49. N 8. P. 811. DOI: 10.1057/palgrave.jors.2600562.
Chermak J.M., Crafton J., Norquist S.M., Patrick R.H. A hybrid economic-engineering model for natural gas production. Energy Econom. 1999. V. 21. N 2. P. 67-94. DOI: 10.1016/S0140-9883(98)00004-8.
Wu S., Ríos-Mercado R.Z.E., Boyd A., Scott L.R. Mod-el relaxations for the fuel cost minimization of steady-state gas pipeline networks. Mathem. Comp. Model. 2000. V. 31. N 2. P. 197-220. DOI: 10.1016/S0895-7177(99)00232-0.
Pindyck R.S. The dynamics of commodity spot and futures markets: a primer. Energy J. 2001. V. 22. N 3. P. 1-12. DOI: 10.5547/ISSN0195-6574-EJ-Vol22-No3-1.
Cremer H., Gasmi F., Laffont J.J. Access to Pipelines for Competitive Gas Markets. J. Regul. Econom. 2003. V. 24. N 1. P. 5-33. DOI: 10.1023/A:1023943613605.
Papadakis I.S., Kleindorfer P.R. Optimizing infrastructure network maintenance when benefits are interdependent. Or Spectrum. 2005. V. 27. P. 63-84. DOI: 10.1007/s00291-004-0167-5.
Contesse L., Ferrer J.C., Maturana S.A. Mixed-Integer Programming Model for Gas Purchase and Transporta-tion. Ann. Operat. Res. 2005. V. 139. N 1. P. 39-63. DOI: 10.1007/s10479-005-3443-0.
Chen Z., Forsyth P.A. A semi-Lagrangian approach for natural gas storage valuation and optimal operation. SIAM J. Sci. Comp. 2007. V. 30. P. 339-368. DOI: 10.1137/060672911.
Chen H., Baldick R. Optimizing short-term natural gas supply portfolio for electric utilities companies. IEEE Transact. Power Syst. 2007. V. 22. N 1. P. 232-239. DOI: 10.1109/TPWRS.2006.889144.
Davidson R.A., Lembo A.J., Ma J., Nozick L.K., O’Rourke T.D. Optimization of investments in natural gas distribution networks. J. Energy Eng. 2006. V. 132. N 2. P. 1-9. DOI: 10.1061/(ASCE)0733-9402(2006)132:2(52).
Sen S. Algorithms for Stochastic Mixed-Integer Programming Models. In Handbooks in OR & MS (Eds: K. Aardal et al). Amsterdam, The Netherlands: Elsevier. 2005. V. 12. Chap. 9. P. 511-558. DOI: 10.1016/S0927-0507(05)12009-X.
Butusov O.B., Kovneristy Yu.K., Meshalkin V.P., Mitin S.G. Ecological and Economic Analysis of Industrial En-terprises. М.: Voskresen'ye. 2003. 324 p. (in Russian).
Meshalkin V.P., Butusov O.B. Computeraided Assessment of the Environmental Impact of Trunk Pipelines, in Russian). М.: INFRA-M. 2010. 449 p. (in Russian).
Hugo A., Pistikopoulos E. Environmentally conscious longrange planning and design of supply chain networks. J. Cleaner Prod. 2005. V. 13. P. 1471-1491. DOI: 10.1016/j.jclepro.2005.04.011.
Srivastava S. Green supply chain management: a state of the art literature review. Internat. J. Manag. Rev. 2007. V. 9. P. 53-80. DOI: 10.1111/j.1468-2370.2007.00202.x.
Guillén-Gosálbez G., Grossmann I. Optimal design and planning of sustainable chemical supply chains under uncertainty. AIChE J. 2009. V. 55. P. 99-121. DOI: 10.1002/aic.11662.
Guillén-Gosálbez G., Grossmann I. A global optimization strategy for the environmentally conscious design of chemical supply chains under uncertainty in the damage assessment mode. Comput. Chem. Eng. 2010. V. 34. P. 42-58. DOI: 10.1016/j.compchemeng.2009.09.003.
Ruiz-Femenia R., Guillén-Gosálbez G., Jiménez L., Caballero J. Multi-objective optimization of environmentally conscious chemical supply chains under demand uncertainty. Chem. Eng. Sci. 2013. V. 95. P. 1-11. DOI: 10.1016/j.ces.2013.02.054.
Bojarski A., Laínez J., Espuña A., Puigjaner L. Incorporating environmental impacts and regulations in a holistic supply chains modeling: An LCA approach. Comput. Chem. Eng. 2009. V. 33. N 10. P. 1747-1759. DOI: 10.1016/j.compchemeng.2009.04.009.
Bekkering J., Broekhuis A.A., Van Gernert W.J.T. Optimisation of a green gas supply chain – A review. Bioresource Technol. 2010. V. 101. P. 450-456. DOI: 10.1016/j.biortech.2009.08.106.
Alfaki M., Haugland D. Strong formulations for the pooling problem. J. Glob. Optim. 2013. V. 56. N 3. P. 897-916. DOI: 10.1007/s10898-012-9875-6.
Kolodziej S., Castro P.M., Grossmann I.E. Global optimization of bilinear programs with a multiparametric disaggregation technique. J. Glob. Optim. 2013. V. 57. N 4. P. 1039-1063. DOI: 10.1007/s10898-012-0022-1.
Midthun K.T., Mette B., Tomasgard A. Modeling Optimal Eco-nomic Dispatch and System Effects in Natural Gas Networks. Energy J. 2009. V. 30. P. 155-180. DOI: 10.5547/ISSN0195-6574-EJ-Vol30-No4-6.
Kall P., Wallace S.W. Stochastic Programming. Chichester: John Wiley & Sons. 1994. 307 p.
Ferris M.C., Dirkse S.P., Jaglac J.H., Meeraus A. An extended mathematical programming framework. Comput. Chem. Eng. 2009. V. 33. P. 1973-1982. DOI: 10.1016/j.compchemeng.2009.06.013.
Gruhn G., Kafarov V.V., Meshalkin V.P., Neumann W. Zuverlässigkeit von Chemieanlagen. Leipzig: VEB Deutscher Verlag für Grundstoffindustrie. 1979. 257 p.
Roy A., Srivastava P., Sinha S. Risk and reliability assessment in chemical process industries using Bayesian methods. Rev. Chem. Eng. 2014. V. 30. N 5. P. 479-499. DOI: 10.1515/revce-2013-0043.
Egorov A.F., Savitskaya T.V., Levushkina S.A., Levushkin A.S. Intelligent decision support system for con-trolling the atmospheric air quality. Theor. Found. Chem. Eng. 2010. 44. N 5. P. 326-338. DOI: 10.1134/S0040579510030127.
Nevinitsyn V.Yu., Labutin A.N., Volkova G.V., Devetyarov A.N. System Analysis of Chemical Reactor as Control Object. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2017. V. 60. N 9. P. 92-99 (in Russian). DOI: 10.6060/tcct.2017609.5587.
Karanevskaya T.N., Shumikhin A.G. Modeling of Technological Processes for the Purpose of Algorithmiza-tion of the Task of Managing Oil Field Treatment Facilities. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 2. P. 84-90 (in Russian). DOI: 10.6060/ivkkt.20206302.6100.
Sarkisov P.D., Egorov A.F., Savitskaya T.V., Bachkala O.V., Kuz'mina Y.A. System analysis of safe chemical handling: methods and approaches to predicting and classifying chemical hazards. Theor. Found. Chem. Eng. 2013. V. 47. N 1. P. 22-30. DOI: 10.1134/S0040579513010119.
Berman A.F. Artificial self-organization and heuristic approach to substantiate the properties of reliability, survivability and safety of complex technical systems. Probl. Bezopast. Chrezv. Situats. 2020. N 4. P. 5-21 (in Russian). DOI: 10.36535/0869-4176-2020-04-1.
Berman A.F., Nikolaychuk O.A., Yurin A.Yu., Pavlov A.I. Principles of Information Technology for Solving In-terdisciplinary Problems of Ensuring Technogenic Security on the Basis of Self-organization. Inform. Matem. Tekhnol. Nauke Upravl. 2019. N 2. P. 5-15 (in Russian). DOI: 10.25729/2413-0133-2019-2-01.
Meshalkin V.P., Panina E.A., Bykov R.S. Principles of developing an interactive system for the semantic processing of scientific and technical texts on chemical technology of reagents and ultrapure substances. Theor. Found. Chem. Eng. 2015. V. 49. N 4 P. 422-426. DOI: 10.1134/S0040579515040314.
Scientific and pedagogical schools of Mendeleev University. Ed. by V.A. Kolesnikov. М.: RKHTU im. D.I. Men-deleev. 2008. 408 p. (in Russian).