SYNTHESIS OF NANOSIZED ZIRCONIUM DIOXIDE, COBALT OXIDE AND RELATED PHASES IN SUPERCRITICAL CO2 FLUID

  • Ilya E. Sokolov Lomonosov Institute of Fine Chemical Technologies
  • Valery V. Fomichev Lomonosov Institute of Fine Chemical Technologies
  • Ruslan M. Zakalyukin MIREA – Russian Technological University
  • Elena V. Kopylova MIREA – Russian Technological University
  • Andrey S. Kumskov Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of the RAS
  • Rais N. Mozhchil The Institute of Solid State Physics of the RAS
  • Andrey M. Ionov The Institute of Solid State Physics of the RAS
Keywords: nanoparticles, supercritical antisolvent precipitation technique, cobalt oxide, zirconium dioxide, transmission electron microscopy

Abstract

This study is devoted to obtaining nanoscale zirconium dioxide, cobalt oxide and related phases by SAS method in supercritical carbon dioxide. The synthesized compounds were characterized by a complex of physico-chemical analytical methods: infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy. The experimental parameters for obtaining the nanoparticles were: pressure 10 MPa, temperature 40 °C, carbon dioxide supply rate 35 g/min, the initial solution supply rate 0.5 ml/min. Individual phases containing zirconium and cobalt, and also samples with zirconium to cobalt molar ratios 3:1, 2:1, 1:1, 2:1 and 1:3 were obtained. The use of zirconium and cobalt acetylacetonates as initial components leads to formation of stable products – nanoparticles of acetates of the corresponding metals in the X-ray amorphous state. When heated to 340-350 °C, the destruction of organometallic complexes to oxides occurs with formation of a continuous series of X-ray amorphous solid solutions in the ZrO2-CoO system. At temperatures above 600 °C, the phases crystallize with the decomposition of solid solutions into ZrO2 and Co3O4. When temperature is above 900 °C, further oxidation of cobalt occurs. Thus, cobalt oxide oxidation into Co3O4 proceeds in two steps, at 600 and 900 °C. For samples of zirconium dioxide with cobalt oxide admixture at a temperature of 700 °C stabilization of the cubic modification is observed which is probably due to the entry of cobalt into the cubic structure of zirconium oxide, which prevents transition to tetragonal and monoclinic modifications.

References

Srinivas M., Buvaneswari G. A study of in vitro drug release from zirconia ceramics. Trends Biomater Artif Or-gans. 2006. V. 20. N 1. P. 24-30.

Roualdes O., Duclos M.E., Gutknecht D., Frappart L., Chevalier J., Hartmann D.J. In vitro and in vivo evalua-tion of an alumina–zirconia composite for arthroplasty applications. Biomaterials. 2010. V. 31. N 8. P. 2043-2054. DOI: 10.1016/j.biomaterials.2009.11.107.

Oetzel C., Clasen R. Preparation of zirconia dental crowns via electrophoretic deposition. J. Mater. Sci. 2006. V. 41. N 24. P. 8130-8137. DOI: 10.1007/s10853-006-0621-7

He X., Zhang Y. Z., Mansell J. P., Su B. Zirconia toughened alumina ceramic foams for potential bone graft applications: fabrication, bioactivation, and cellular responses. J. Mater. Sci.: Materials in Medicine. 2008. V. 19. N 7. P. 2743-2749. DOI: 10.1007/s10856-008-3401-x.

Masudi A., Muraza O. Zirconia-based nanocatalysts in heavy oil upgrading: a mini review. Energy & fuels. 2018. V. 32. N 3. P. 2840-2854. DOI: 10.1021/acs.energyfuels.7b03264.

Park Y.M., Lee J.Y., Chung S.H., Park I.S., Lee S.Y., Kim D.K., Lee J.S., Lee K.Y. Esterification of used vegetable oils using the heterogeneous WO3/ZrO2 catalyst for production of biodiesel. Biores. Technol. 2010. V. 101. N 1. P. 59-61. DOI: 10.1016/j.biortech.2009.04.025.

Luo J., Xu H., Liu Y., Chu W., Jiang C., Zhao X. A facile approach for the preparation of biomorphic CuO–ZrO2 catalyst for catalytic combustion of methane. App. Catal. A: Gen. 2012. V. 423. P. 121-129. DOI: 10.1016/j.apcata.2012.02.025.

Khan N.A., Mishra D.K., Ahmed I., Yoon J.W., Hwang J.S., Jhung S.H. Liquid-phase dehydration of sorbitol to isosorbide using sulfated zirconia as a solid acid catalyst. App. Catal. A: Gen. 2013. V. 452. P. 34-38. DOI: 10.1016/j.apcata.2012.11.022.

Grecea M. L., Dimian A. C., Tanase S., Subbiah V., Rothenberg G. Sulfated zirconia as a robust superacid catalyst for multiproduct fatty acid esterification. Catal. Sci.Technol. 2012. V. 2. N 7. P. 1500-1506. DOI: 10.1039/c2cy00432a.

Ejtemaei M., Aghdam N.C., Babaluo A.A., Tavakoli A., Bayati B. n-pentane isomerization over Pt-Al promoted sulfated zirconia nanocatalyst. Sci. Iran. Transact. C, Chem., Chem. Eng. 2017. V. 24. N 3. P. 1264-1271. DOI: 10.24200/sci.2017.4110.

Vlasov E.A., Myakin S.V., Sychov M.M., Aho A., Postnov A.Y., Mal’tseva N.V., Dolgashev A.O., Omarov Sh.O., Murzin D.Y. On Synthesis and Characterization of Sulfated Alumina–Zirconia Catalysts for Isobutene Alkylation. Catal. Lett. 2015. V. 145. N 9. P. 1651-1659. DOI: 10.1007/s10562-015-1575-7.

Yadav G. D., Ajgaonkar N. P., Varma A. Preparation of highly superacidic sulfated zirconia via combustion synthesis and its application in Pechmann condensation of resorcinol with ethyl acetoacetate. J. Catal. 2012. V. 292. P. 99-110. DOI: 10.1016/j.jcat.2012.05.004.

Marakatti V.S., Shanbhag G.V., Halgeri A.B. Sulfated zirconia; an efficient and reusable acid catalyst for the selective synthesis of 4-phenyl-1, 3-dioxane by Prins cyclization of styrene. Appl. Catal. A: Gen. 2013. V. 451. P. 71-78. DOI: 10.1016/j.apcata.2012.11.016.

Sousa-Aguiar E.F., Appel L.G. Catalysis involved in dimethylether production and as an intermediate in the generation of hydrocarbons via Fischer-Tropsch synthesis and MTG process. Catalysis. 2011. V. 23. P. 284-315. DOI: 10.1039/9781849732772-00284.

Permsubscul A., Vitidsant T., Damronglerd S. Catalytic cracking reaction of used lubricating oil to liquid fuels catalyzed by sulfated zirconia. Korean J. Chem. Eng. 2007. V. 24. N 1. P. 37-43. DOI: 10.1007/s11814-007-5006-3.

Gao S., Chen X., Wang H., Mo J., Wu Z., Liu Y., Weng X. Ceria supported on sulfated zirconia as a superacid catalyst for selective catalytic reduction of NO with NH3. J. Colloid Interface Sci. 2013. V. 394. P. 515-521. DOI: 10.1016/j.jcis.2012.12.034.

Zhang Y., Chen T., Zhang G., Wang G., Zhang H. Mesoporous Al-promoted sulfated zirconia as an efficient heterogeneous catalyst to synthesize isosorbide from sorbitol. Appl. Catal. A: Gen. 2018. V. 562. P. 258-266. DOI: 10.1016/j.apcata.2018.06.024.

Yang K., Li H., Zhao S., Lai S., Lai W., Lian Y., Fang W. Improvement of Activity and Stability of CuGa Pro-moted Sulfated Zirconia Catalyst for n-Butane Isomerization. Indust. Eng. Chem. Res. 2018. V. 57. N 11. P. 3855-3865. DOI: 10.1021/acs.iecr.7b04590.

Li N., Wang A., Zheng M., Wang X., Cheng R., Zhang T. Probing into the catalytic nature of Co/sulfated zirconia for selective reduction of NO with methane. J. Catal. 2004. V. 225. N 2. P. 307-315. DOI: 10.1023/a:1016667505736.

Zhang H., Li N., Li L., Wang A., Wang X., Zhang T. Selective Catalytic Reduction of NO with CH4 Over In–Fe/Sulfated Zirconia Catalysts. Catal. lett. 2011. V. 141. N 10. P. 1491-1497. DOI: 10.1039/c9ra06985b.

Chen K., Li N., Ai N., Li M., Cheng Y., Rickard W.D., Jiang S.P. Direct application of cobaltite-based perovskite cathodes on the yttria-stabilized zirconia electrolyte for intermediate temperature solid oxide fuel cells. J. Mater. Chem. A. 2016. V. 4. N 45. P. 17678-17685. DOI: 10.1039/c6ta07067a.

Firsova A.A., Khomenko T.I., Sil’chenkova O.N., Korchak V.N. Oxidation of carbon monoxide in the presence of hydrogen on the CuO, CoO, and Fe2O3 oxides supported on ZrO2. Kinet. Catal. 2010. V. 51. N 2. P. 299-311. DOI: 10.1134/s0023158410020205.

Özkara-Aydınoğlu Ş., Aksoylu A.E. Carbon dioxide reforming of methane over Co-X/ZrO2 catalysts (X= La, Ce, Mn, Mg, K). Catal. Commun. 2010. V. 11. N 15. P. 1165-1170. DOI: 10.1016/j.catcom.2010.07.001.

Firsova A.A., Tyulenin Y.P., Khomenko T.I., Korchak V.N., Krylov O.V. Methane reforming with carbon dioxide on cobalt-containing catalysts. Kinet. Catal. 2003. V. 44. N 6. P. 819-826. DOI: 10.1023/b:kica.0000009060.12818.29.

Liu T., Zhang X., Yuan L., Yu J. A review of high-temperature electrochemical sensors based on stabilized zirconia. Solid State Ionics. 2015. V. 283. P. 91-102. DOI: 10.1016/j.ssi.2015.10.012.

Miura N., Sato T., Anggraini, S. A., Ikeda H., Zhuiykov S. A review of mixed-potential type zirconia-based gas sensors. Ionics. 2014. V. 20. N 7. P. 901-925. DOI: 10.1007/s11581-014-1140-1.

Arena F., Barbera K., Italiano G., Bonura G., Spadaro L., Frusteri F. Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. J. Catalysis. 2007. V. 249. N 2. P. 185-194. DOI: 10.1016/j.jcat.2007.04.003.

Tada S., Watanabe F., Kiyota K., Shimoda N., Hayashi R., Takahashi M., Nariyuki A., Igarashi A., Satokawa S. Ag addition to CuO-ZrO2 catalysts promotes methanol synthesis via CO2 hydrogenation. J. Catalysis. 2017. V. 351. P. 107-118. DOI: 10.1021/acscatal.6b01805.

Shao G.N., Imran S.M., Jeon S.J., Engole M., Abbas N., Haider M.S., Kang S.J., Kim H.T. Sol–gel synthesis of photoactive zirconia–titania from metal salts and investigation of their photocatalytic properties in the photodegradation of methylene blue. Powder Technol. 2014. V. 258. P. 99-109. DOI: 10.1016/j.powtec.2014.03.024.

Zhang P., Choy K.L. The Synthesis of Single Tetragonal Phase Zirconia by Sol-Gel Route. Int. J. Eng. Res. & Sci. 2015. P. 20-21.

Wang P., Zhao Z.D., Chen S.X., Fan G.R. Hydrothermal Synthesis of Mesoporous Nanocrystalline Tetragonal ZrO2 Using Dehydroabietyltrimethyl Ammonium Bromine. Bio-Resources. 2015. V. 10. N 1. P. 1271-1284. DOI: 10.15376/biores.10.1.1271-1284.

Tomar L.J., Bhatt P.J., Desai R.K., Chakrabarty B.S. Enhancement of optical properties of hydrothermally syn-thesized TiO2/ZrO2 nanoparticles by Al, Ce Co-doping. AIP Publishing. 2015. V. 1665. N 1. P. 050124. DOI: 10.1063/1.4917765.

Konovalov I.A., Mavrin B.N., Prokudina N.A., Fomichev V.V. Synthesis of nanoscale titanium dioxide by precipitation using supercritical anti-solvent. Russ. Chem. Bull. 2016. V. 65. N 12. P. 2795-2800. DOI: 10.1007/s11172-016-1658-7.

Sokolov I.E., Konovalov I.A., Zakalyukin R.M., Golubev D.V., Kumskov A.S., Fomichev V.V. Synthesis of nanosized zirconium dioxide and its solid solutions with titanium dioxide from the CO2 supercritical fluid. MRS Commun. 2018. V. 8. N 1. P. 59-64. DOI: 10.1557/mrc.2018.3.

Smirnova K.A., Fomichev V.V., Drobot D.V., Nikishina E.E. Obtaining nanosized pentoxides of niobium and tantalum by supercritical fluid antisolvent precipitation. Fine Chem.Technol. 2015. V. 10. N. 1. P. 76-82 (in Russian).

Ito K., Bernstein H.J. The vibrational spectra of the for-mate, acetate, and oxalate ions. Canad. J. Chem. 1956. V. 34. N 2. P. 170-178. DOI: 10.1139/v56-021.

Ismail H.M. Characterization of the decomposition products of zirconium acetylacetonate: nitrogen adsorption and spectrothermal investigation. Powder Technol. 1995. V. 85. N 3. P. 253-259. DOI: 10.1016/0032-5910(95)03025-7.

López E.F., Escribano V.S., Panizza M., Carnasciali M.M. Vibrational and electronic spectroscopic properties of zirconia powders. J. Mater. Chem. 2001. V. 11. N 7. P. 1891-1897. DOI: 10.1039/b100909p.

Guan H., Shao C., Wen S., Chen B., Gong J., Yang X. A novel method for preparing Co3O4 nanofibers by using electrospun PVA/cobalt acetate composite fibers as precursor. Mater. Chem. Phys. 2003. V. 82. N 3. P. 1002-1006. DOI: 10.1016/j.matchemphys.2003.09.003.

Kale G.M., Pandit S.S., Jacob K.T. Thermodynamics of cobalt (II, III) oxide (Co3O4): Evidence of phase transition. Transact. Jap. Inst. Metals. V. 29. N 2. P. 125-132. DOI: 10.2320/matertrans1960.29.125.

Published
2021-05-13
How to Cite
Sokolov, I. E., Fomichev, V. V., Zakalyukin, R. M., Kopylova, E. V., Kumskov, A. S., Mozhchil, R. N., & Ionov, A. M. (2021). SYNTHESIS OF NANOSIZED ZIRCONIUM DIOXIDE, COBALT OXIDE AND RELATED PHASES IN SUPERCRITICAL CO2 FLUID. ChemChemTech, 64(5), 35-43. https://doi.org/10.6060/ivkkt.20216405.6060
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)