DETERMINATION OF PIROCARBON MATRIX CHARACTERISTICS IN CARBON/CARBON COMPOSITES

  • Maria V. Papkova Division for Glass/Carbon Filled Composite Research, Development and Production
  • Sergei V. Tashchilov Division for Glass/Carbon Filled Composite Research, Development and Production
  • Ilya V. Magnitsky Bauman Moscow State Technical University
  • Alexander E. Dvoretsky Complex "Non-metallic materials"
Keywords: pyrocarbon, extinction angle, matrix structural characteristics, carbon-carbon composite, C/C composite, pyC

Abstract

One of the methods of carbon/carbon composites (C/C composites) production is the deposition of a pyrocarbon (pyC) matrix in a porous preform. The investigation of the pyC matrix characteristics is based on the optical anisotropy with determination of the extinction angle Ae and X-ray diffraction determination of the interplanar spacing d002, crystallite size in the direction of stacking of graphite layers Lc and average size of graphite planes parallel layer in crystallites La. In this study, three previously produced by the thermal gradient method with different parameters specimens of C/C composites were investigated by optical microscopy and X-ray diffraction methods. The studied specimens have a different type of a texture and different structural characteristics of the pyC matrix. Extinction angle Ae for specimen 1, specimen 2 and 3 was 5°, 19° and 41°, respectively. The range of the extinction angle for the pyC matrix is wider than that presented in literature. And according to the classification of pyC the matrix of specimen 1, specimen 2 and 3 is dark laminar pyC, rough laminar pyC and highly textured pyC. For specimen 2 the largest d002 equal to 0.3476 nm was observed. The lowest degree of three-dimensional ordering relative other specimens was for the specimen 2 with rough laminar pyC matrix. The highest degree of three-dimensional ordering was for the specimen 3 with highly textured pyC matrix. However, there is no direct relationship between the textural and structural characteristics of the pyC matrix. Therefore, the study of the pyC matrix should be based on optical and X-ray diffraction methods.

References

Fialkov A.S. Carbon, interlayer compounds and composites based on it. M.: Aspect Press. 1997. 718 p. (in Russian).

Shchurik A.G. Artificial carbon materials. Perm: 2009. 342 p. (in Russian).

Morgan P. Carbon Fibers and their Composites. Boca Raton: CRC Press. 2005. 1131 p. DOI: 10.1201/9781420028744.

Aseinov N.I., Burtyl I.V. Methods of thrust vector control rockets solid fuel. Reshetnevskie chteniya. 2013. V. 1. P. 109 (in Russian).

Degtyar V.G., Kalashnikov S.T., Krechka G.A., Save-liev V.N. Carbon-carbon composite materials for prod-ucts of rocket and space technology. Konstr. Funkts. Ma-ter. 2013. N. 2. P. 12–17 (in Russian).

Evdokimov I.A., Ovsyannikov D.A., Khairullin R.R., Perfilov S.A., Pozdnyakov A.A., Sukhorukov D.V., Lomakin R.L., Pakhomov I.V. Transport properties of nanostructured aluminum-matrix composite materials modified with carbon nanostructures. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 12. P. 44–49. DOI: 10.6060/ivkkt.20206312.4y.

Evdokimov I.A., Khairullin R.R., Perfilov S.A., Pozdnyakov A.A., Lomakin R.L., Pakhomov I.V., Kulnitsky B.A. Nanostructural composite material modified with graphene-like particles. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 12. P. 37–43. DOI: 10.6060/ivkkt.20206312.3y.

Vallerot J.-M. De pyrocarbone: propri´et´es, structure et anisotropie optique. L’universite Bordeaux I. 2004. 276 p.

Zhang M., Su Z., Xie Z., Chen J., Huang Q. Microstructure of Pyrocarbon with Chemical Vapor Infiltration. Proc. Eng. 2012. V. 27. P. 847–854. DOI: 10.1016/j.proeng.2011.12.530.

Vallerot J.-M., Bourrat X., Mouchon A., Chollon G. Quantitative structural and textural assessment of laminar pyrocarbons through Raman spectroscopy, electron diffraction and few other techniques. Carbon. 2006. V. 44. N. 9. P. 1833–1844. DOI: 10.1016/j.carbon.2005.12.029.

Vallerot J.-M., Bourrat X. Pyrocarbon optical properties in reflected light. Carbon. 2006. V. 44. N. 8. P. 1565–1571. DOI: 10.1016/j.carbon.2005.12.046.

Zhang D.S., Li K.Z., Guo L.J., Li H.-j, Li H.-l. Texture characterization and mechanical properties of pyrocarbon obtained by chemical vapor deposition at 1450–1550°С. Mater. Sci. Eng.: A. 2012. V. 539. P. 1–6. DOI: 10.1016/j.msea.2011.10.046.

Deng H., Li K., Li H., Wang P., Xie J., Zhang L. Effect of brake pressure and brake speed on the tribological properties of carbon/carbon composites with different pyrocarbon textures. Wear. 2010. V. 270. N 1. P. 95–103. DOI: 10.1016/j.wear.2010.09.010.

Zhang H., Eddie L.-H., Ping X. Fluidized bed chemical vapor deposition of pyrolytic carbon-III. Relationship be-tween microstructure and mechanical properties. Carbon. 2015. V. 91. P. 346–357. DOI: 10.1016/j.carbon.2015.05.009.

Reznik B., Guellali M., Gerthsen D., Oberacker R., Hoffmann M.J. Microstructure and mechanical properties of carbon–carbon composites with multilayered pyrocarbon matrix. Mater. Lett. 2002. V. 52. N 1. P. 14–19. DOI: 10.1016/S0167-577X(01)00357-3.

Piat R., Schnack E. Modeling the effect of microstructure on the coefficients of thermal expansion of pyrolytic carbon. Carbon. 2003. V. 41. N 11. P. 2162–2165. DOI: 10.1016/S0008-6223(03)00231-8.

Wang T., Zhang S., Ren B., Li K., Li W., Li H. Optimizing mechanical and thermal expansion properties of car-bon/carbon composites by controlling textures. Curr. Appl. Phys. 2020. V. 20. N 10. P. 1171–1175. DOI: 10.1016/j.cap.2020.08.002.

Zhang D., Li K., Li H., Jia Y., Guo L., Li H. Coefficients of thermal expansion of low texture and isotropic pyrocarbon deposited on stationary substrates. Mater. Lett. 2012. V. 68. P. 68–70. DOI: 10.1016/j.matlet.2011.10.012.

Skachkov V.A., Ivanov V.I., Nesterenko T.N., Berezhnaya O.R. Some physical and technical characteristics of pyrographite. Metalurgiya. 2019. V. 41. P. 56–59 (in Russian).

Jia J. Zhang B.; Liu D., Ji G. Microstructure and properties of CNTs reinforced CVI-pyrocarbon matrix. J. Eur. Ceramic Soc. 2020. V. 11. P. 23-31. DOI: 10.1016/j.jeurceramsoc.2020.11.023.

Wang T., Li H., Shen Q., Li K., Li W., Song Q., Zhang S. Dependence of mechanical properties on microstructure of high-textured pyrocarbon prepared via isothermal and thermal gradient chemical vapor infiltration. Compos. Pt. B: Eng. 2020. V. 192. P. 107-119. DOI: 10.1016/j.compositesb.2020.107982.

Li M.-L., Qi L.-H., Li H.-J., Xu G.-Z. Measurement of the extinction angle about laminar pyrocarbons by image analysis in reflection polarized light. Mater. Sci. Eng.: A. 2007. V. 448. N 1. P. 80–87. DOI: 10.1016/j.msea.2006.11.104.

Bamborin M.Yu., Yartsev D.V., Kolesnikov S.A. Influ-ence of high-temperature treatment on X-ray structural characteristics and thermal conductivity of carbon-carbon composite materials. Novye Ogneupory. 2013. P. 27–32 (in Russian).

Sosedov V.P. Properties of carbon-based structural mate-rials. Directory. M.: Metallurgy. 1975. 336 p. (in Rus-sian).

Published
2021-05-13
How to Cite
Papkova, M. V., Tashchilov, S. V., Magnitsky, I. V., & Dvoretsky, A. E. (2021). DETERMINATION OF PIROCARBON MATRIX CHARACTERISTICS IN CARBON/CARBON COMPOSITES. ChemChemTech, 64(5), 44-49. https://doi.org/10.6060/ivkkt.20216405.6352
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)