ANALYSIS OF POLYESTERS STRUCTURE BASED ON MALIC ACID AND ITS ESTER
Abstract
Four polyesters based on malic acid and its dibutyl ester were obtained. Ethylene glycol and 1,4-butanediol were used as comonomers. The reaction of polycondensation was carried out without a catalyst, and the transesterification of glycol esters was carried out in the presence of tetrobutoxytitanium in an amount of 1wt%. The malic acid during polycondensation we melted and dissolved in glycols at a temperature of 100 °C to prevent the reaction of intramolecular dehydration. The reactions were carried out for 3 hours with stirring and gradual heating of the reaction mass. The processes were carried out in a flow of nitrogen to remove the formed low-molecular products. These products were condensed and analyzed by gas-liquid chromatography. The control of the polycondensation reaction was carried out by the molecular weight determined by the viscometric method. The structure of the obtained polyesters was determined using IR and (1H, 13C) NMR spectroscopy. The obtained polymer samples represent a resinous mass from light yellow to light brown with average molecular weights from 2000 to 4000 g/mol. Analysis of IR spectra showed that in the samples obtained by ester transesterification, the intensity of the hydroxyl group band is more than that of acid and diol based polymers. This difference can be explained by the presence of polymer chain branches obtained as result of the reaction of self-condensation. Analysis of (1H, 13C) NMR spectra confirms that in the process of polycondensation of malic acid with diols, a side reaction of self-condensation of the acid occurs with the formation of branched polymer units. In the case of the use of an ester as a monomer, polyester of a linear structure is obtained. In all obtained samples of polyesters, the presence of unsaturated bonds in the structure was also observed. This confirms that a side reaction of internal malic acid dehydration took place under the synthesis conditions. To reduce the unsaturation of polyesters, the polycondensation process must be carried out at a lower temperature.
References
Seyednejad H., Ghassemi A.H., van Nostrum C.F., Vermonden T., Hennink W.E. Functional aliphatic polyes-ters for biomedical and pharmaceutical applications. J. Control. Release. 2011. V. 152, N 1. P. 168-176. DOI: 10.1016/j.jconrel.2010.12.016.
Siracusa V., Rocculi P., Romani S., Dalla Rosa M. Bio-degradable polymers for food packaging: a review. Trends Food Sci. Technol. 2008. V. 19. N 12. P. 634-643. DOI: 10.1016/j.tifs.2008.07.003.
Legonkova O.A., Asanova L.Y. Linear polyesters in modern medicine. Vysokotekhnol. Meditsina. 2017. N 1. P. 16-31 (in Russian).
Vildanov F.Sh., Latypova F.N., Krasutskii P.A., Chanyshev R.R. Biodecomposed polymers – a current state and use prospects. Bashkir. Khim. Zhurn. 2012. V. 19. N 1. P. 135-139 (in Russian).
Glotova V.N., Novikov V.T., Ushakova T.V. Preparation of lactic acidoligomer. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 6. P. 23-28 (in Russian). DOI: 10.6060/ivkkt.20196206.5859.
Jiang M., Ma J., Wu M., Liu R., Liang L., Xin F., Zhang W., Jia H., Dong W. Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies. Biores. Technol. 2017. V. 245. N B. P. 1710-1717. DOI: 10.1016/j.biortech.2017.05.209.
Putri D.N., Sahlan M., Montastruc L., Meyer M., Negny S., Hermansyah H. Progress of fermentation methods for bio-succinic acid production using agro-industrial waste by Actinobacillus succinogenes. Energy Reports. 2020. V. 6. Suppl. 1. P. 234-239. DOI: 10.1016/j.egyr.2019.08.050.
Oswald F., Dörsam S., Veith N., Zwick M., Neumann A., Ochsenreither K., Syldatk C. Sequential mixed cul-tures: from syngas to malic acid. Front. Microbiol. 2016. V. 7. P. 891. DOI: 10.3389/fmicb.2016.00891.
Qiu Y., Wanyan Q., Xie W., Wang Z., Chen M., Wu D. Green and biomass-derived materials with controllable shape memory transition temperatures based on cross-linked Poly(l-malic acid). Polymer. 2019. V. 180. P. 121733. DOI: 10.1016/j.polymer.2019.121733.
Ouchi T., Fujino A., Tanaka K., Banba T. Synthesis and antitumor activity of conjugates of poly(α-malic acid) and 5-fluorouracils bound via ester, amide or carbamoyl bonds. J. Control. Release. 1990. V. 2. N 12. P. 143-153. DOI: 10.1016/0168-3659(90)90090-g.
Wang J., Ni C., Zhang Y., Zhang M., Li W., Yao B., Li Zhang L. Preparation and pH controlled release of polyelectrolyte complex of poly(l-malic acid-co-d,l-lactic acid) and chitosan. Colloids and Surfaces B: Biointerfaces. 2014. V. 115. P. 275-279. DOI: 10.1016/j.colsurfb.2013.12.018.
Pinto S.C., Moine L, Tessier B, Nicolas V, dos Santos O.D.H., Fattal E. Pyrazinoic acid-Poly(malic acid) biode-gradable nanoconjugate for efficient intracellular delivery. Prec. Nanomed. 2019. V. 2. N 3. P. 303-317. DOI: 10.33218/prnano2(3).190523.1.
Caruelle J.-P., Barritault D., Jeanbat-Mimaud V., Cammas-Marion S., Langlois V., Guerin P., Barbaud C. Bioactive functionalized polymer of malic acid for bone re-pair and muscle regeneration. J. Biomater. Sci. 2000. V. 11. N 9. P. 979-991. DOI: 10.1163/156856200744147.
Lee B.-S., Holler E. β-Poly(L-malate) production by non-growing microplasmodia of Physarum polycephalum: Effects of metabolic intermediates and inhibitors. FEMS Microbiol. Lett. 2000. V. 193. N 1. P. 69-74. DOI: 10.1016/S0378-1097(00)00457-2.
Kajiyama T., Taguchi T., Kobayashi H., Kataoka K., Tanaka J. Physicochemical properties of high-molecular-weight poly(α,β-malic acid) synthesized by direct polycon-densation. Polymer Bull. 2003. V. 50. N 1. P. 69-75. DOI: 10.1007/s00289-003-0143-2.
Belcheva N., Zlatkov T., Panayotov I.M., Tsvetanov C. Poly(ether-ester) networks prepared by polycondensation of R,S-malic acid with diols and polyether alcohols in the pres-ence of N,N′-dicyclohexylcarbodiimide. Polymer. 1993. V. 34. N 10. P. 2213-2217. DOI: 10.1016/0032-3861(93)90753-W.
Hahn C., Wesselbaum S., Keul H., Möller M. OH-functional polyesters based on malic acid: Influence of the OH-groups onto the thermal properties. Eur. Polymer J. 2013. V. 49. N 1. P. 217-227. DOI: 10.1016/j.eurpolymj.2012.09.020.
Bikiaris D.N., Achilias D.S. Synthesis of poly(alkylene succinate) biodegradable polyesters, Part II: Mathematical modelling of the polycondensation reaction. Polymer. 2008. V. 49. N 17. P. 3677-3685. DOI: 10.1016/j.polymer.2008.06.026.
Kuzmina N.S., Portnova S.V., Krasnykh E.L. Esterification of malic acid on various catalysts. Tonkie Khim. Tekhnol. 2020. V. 2. N 15. P. 47-55 (in Russian). DOI: 10.32362/2410-6593-2020-15-2-47-55.
Sheikholeslami S.N., Rafizadeh M., Taromi F.A., Shirali H., Jabbari E. Material properties of degradable Poly(butylene succinate-co-fumarate) copolymer networks synthesized by polycondensation of pre-homopolyesters. Polymer. 2016. V. 98. P. 70-79. DOI: 10.1016/j.polymer.2016.06.012.
Bikiaris D.N., Papageorgiou G.Z., Achilias D.S. Synthesis and comparative biodegradability studies of three poly(alkylene succinate)s. Polymer Degrad. Stabil. 2006. V. 91. N 1. P. 31-43. DOI: 10.1016/j.polymdegradstab.2005.04.030.
Mahmud A., Bakr M.A. Poly(maleic acid-co-propane-1,2-diol-co-adipic acid) for pH-triggered drug delivery. React. Funct. Polymers. 2015. V. 96. P. 21-24. DOI: 10.1016/j.reactfunctpolym.2015.09.002.
Petukhov B.V. Polyester fibers. M.: Khimiya. 1976. 272 p. (in Russian).
Parcheta P., Datta J. Structure-rheology relationship of fully bio-based linear polyester polyols for polyurethanes - Synthesis and investigation. Polymer Testing. 2018. V. 67. P. 110-121. DOI: 10.1016/j.polymertesting.2018.02.022.
Kajiyama T., Kobayashi H., Morisaku K., Taguchi T., Kataoka K., Tanaka J. Determination of end-group struc-tures and by-products of synthesis of poly(α,β-malic acid) by direct polycondensation. Polymer Degrad. Stabil. 2004. V. 84. N 1. P. 151-157. DOI: 10.1016/j.polymdegradstab.2003.10.005.
Kajiyama T., Taguchia T., Kobayashia H., Kataokaa K., Tanaka J. Synthesis of high molecular weight poly(α,β,-malic acid) for biomedical use by direct polycondensation. Polymer Degrad. Stabil. 2003. V. 81. P. 525–530. DOI: 10.1016/S0141-3910(03)00153-8.
Nagata M., Kono Y., Sakai W., Tsutsumi N. Preparation and Characterization of Novel Biodegradable Optically Active Network Polyesters from Malic Adic. Macromolecules. 1999. V. 32. N 23. P. 7762-7767. DOI: 10.1021/ma9909071.
Spectral database for organic compounds, National Institute of Advanced. [Electronic resource]. URL: http://riodb01.ibase.aist.go.jp. (Дата обращения: 17.12.2020).
Qiu Y., Wanyan Q., Xie W., Wang Z., Chen M.,Wu D. Green and biomass-derived materials with controllable shape memory transition temperatures based on cross-linked Poly(l-malic acid). Polymer. 2019. V. 180. P. 121733. DOI: 10.1016/j.polymer.2019.121733.
Kajiyama T., Kobayashi H., Morisaku K., Taguchi T., Kataoka K., Tanaka J. Determination of end-group struc-tures and by-products of synthesis of poly(α,β-malic acid) by direct polycondensation. Polymer Degrad. Stabil. 2004. V. 84. N 1. P. 151-157. DOI: 10.1016/j.polymdegradstab.2003.10.005.