СИНТЕЗ ПОЛИ (СТИРОЛ-СО-1,3,5-ТРИОКСАНА) ЭКОЛОГИЧЕСКИМ КАТАЛИЗАТОРОМ МОНТМОРИЛЛОНИТ МАГНИТ-NA+ КАТАЛИЗАТОР

  • Nabil Hamam Университет Мустафы Стамбули
  • Mohammed I. Ferrahi Университет Орана Ахмед Бен Белла
  • Mohammed Belbachir Университет Орана Ахмед Бен Белла
  • Rachid Meghabar Университет Орана Ахмед Бен Белла
Ключевые слова: экологический катализатор, стирол, 1,3,5-триоксан, магнит-Na, поли (1,3,5-триоксан-со-стирол)

Аннотация

В данной работе обсуждается экологический подход к синтезу сополимеров (1,3,5-триоксан-со-стирол), полученных сополимеризацией 1,3,5-триоксана (TOX) со стиролом (ST) в присутствии Магнит-Na+ в растворе. Магнит-Na+ представляет собой инициатор из монтмориллонитовой глины с обменом Na+. Этот твердый катализатор имеет много преимуществ. Среди них: процесс прост в использовании, экологичен и в конечном продукте нет следов инициатора. Мы изучали кинетику реакции по влиянию количества магнита -Na +. Полученный сополимер охарактеризовали с помощью 1H ЯМР, ДСК и ИК-спектроскопии и анализа катализатора с помощью XRD. После проведения этих кинетических исследований и анализов в конце можно предложить механизм реакции сополимеризации.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Литература

Slepchuk I., Semeshko O.Ya., Asaulyuk T.S., Saribekova Yu.G. Investigation of impact of crosslinking agents on characteristics of spatial net and properties of styreneacrylic polymer films. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2018. V. 61. N 7. P. 68-76 (in Russian). DOI: 10.6060/ivkkt.20186107.5670.

Reddy C.R, Bhat Y.S., Nagendrappa G., Prakash B.S.J. Brønsted and Lewis acidity of modified montmorillonite clay catalysts determined by FT-IR spectroscopy. Catalysis Today. 2009. V. 1417. P. 157–160. DOI: 10.1016/j.cattod.2008.04.004.

Vaccari A. Clays and catalysis: a promising future. Appl. Clay Sci. 1999. V. 14. P. 161–198. DOI: 10.1016/S0169-1317(98)00058-1.

Breen C. Thermogravimetric Study of the Desorption of Cyclohexylamine and Pyridine from an Acid-Treated Wyoming Bentonite. Clay Miner. 1991. V. 26. P. 473–486. DOI: 10.1180/claymin.1991.026.4.03.

Rhodes C.N., Franks M., Parkes G.M.B., Brown D.R. The effect of acid treatment on the activity of clay sup-ports for ZnCl2 alkylation catalystsю. J. Chem. Soc. Chem. Commun. 1991. V. 12. P. 804–807. DOI: 10.1039/c39910000804.

Rhodes C.N., Brown D.R. Surface Properties and Porosities of Silica and Acid-treated Montmorillonite Catalyst Supports; Influence on Activities of Supported ZnCI, Alkylation Catalysts. J. Chem. Soc., Faraday Transact. 1993. V. 89. P. 1387–1391. DOI: 10.1039/ft9938901387.

Yadav M.K., Chudasama C.D., Jasra R.V. Isomerisation of alpha-pinene using modified montmorillonite clays. J. Molec. Catal. A: Chem. 2004. V. 216. P. 51-59. DOI: 10.1016/j.molcata.2004.02.004.

Hart M.P., Brown D.R. Surface acidities and catalytic activities of acid-activated clays. J. Molec. Catal. A: Chem. 2004. V. 212. P. 315–321. DOI: 10.1016/j.molcata.2003.11.013.

Jasra R.V. Solid acid catalyst for acylation of aromatics. Bull. Catal. Soc. India. 2003. V. 2. P. 157-183.

Belbachir M., Bensaoula A. Composition and method for catalysis using bentonites. US Patent. 2001. 6,274,527.

Izumi Y., Onaka M. Organic Syntheses Using Aluminosilicates. Adv. Catal. 1992. V. 38. P. 245-282. DOI: 10.1016/S0360-0564(08)60008-5.

Hosokawa Y., Higuchi K., Izumi Y. Acidity comparison between ion-exchanged clay montmorillonites by using silylation of alcohol. Tetrahed. Lett. 1993. V. 34. P. 1171-1172. DOI: 10.1016/S0040-4039(00)77519-8.

Kawai M., Onaka M., Izumi Y. Clay montmorillonite: an efficient, heterogeneous catalyst for Michael reactions of silyl ketene acetals and silyl enol ethers with α, β-unsaturated carbonyl compounds. Bull. Chem. Soc. Japan. 1988. V. 61. P. 2164-2175. DOI: 10.1246/bcsj.61.2157.

Ballantine J.A., Davies M., Patel I., Purnell J.H., Rayanakorn M., Williams K.J., Thomas J.M. Catalysed by sheet silicates: Ether formation by the intermolecular de-hydration of alcohols and by addition of alcohols to al-kenes. J. Molec. Catal. 1984. V. 26. P. 37-56. DOI: 10.1016/0304-5102(84)85019-1.

Kern W., Jaacks V. Trifluoride, Some kinetic effects in the polymerization of 1,3,5‐trioxane. J. Polymer Sci. 1960. V. 48. P. 399-404. DOI: 10.1002/pol.1960.1204815040.

Aouissi A., Al-Othman Z., Al-Shehri H. Mechanism of the Polymerization of Styrene and 2.3 Dihydro-4H-Pyran Catalyzed by H3PW12O40 Catalyst. Oriental J. Chem. 2015. V. 31. P. 1695-1701. DOI: 10.13005/ojc/310349.

Imoto M., Aoki S. Cationic polymerization catalyzed by boron trifluoride‐ether complexes. Vinyl polymerization. LI. Die Makromolekulare Chemie. 1961. V. 48. P. 72-79. DOI: 10.1002/macp.1961.020480108.

Masuda T., Sawamoto M. Higashimura T. Cationic polymerization of styrenes by protonic acids and their de-rivatives, 1. Rates and molecular weight distributions of polystyrenes formed by some sulfonic superacids Die Makromolekulare Chemie. 1976. V. 177. P. 2981-2993. DOI: 10.1002/macp.1976.021771014.

Na Y., Wang X., Lian K., Chen C. Dinuclear α- diimine Ni(II) and Pd(II) Catalyzed Ethylene Polymerization and Copolymerization. Chem.Cat.Chem. 2016. V. 9. P. 1062-1066. DOI: 10.1002/cctc.201601500.

Otto F.D., Parravano G. Polymerization of styrene with TiCl3–Al(C2H5)3 and VCl3–Al(C2H5)3 catalysts. J. Polymer Sci. Part A: Gen. Paper. 1964. V. 2. P. 5131-5147. DOI: 10.1002/pol.1964.100021210.

Zhu H., Liu Z., An X., Lei F. Keggin heteropolyacids as catalyst for the polymerization of β-pinene. Reac. Kinet. Mech. Cat. 2010. V. 100. P. 355-361. DOI: 10.1007/s11144-010-0155-5.

Darensbourg D.J., Choi W., Karroonnirun O. Ring Opening Polymerization of Cyclic Monomers by Com-plexes Derived from Biocompatible Metals. Production of Poly(lactide), Poly(trimethylene carbonate), and Their Co-polymers. Macromolecules. 2008. V. 41. P. 3493-3502. DOI: 10.1021/ma800078t.

Lu J., Kamigaito M., Sawamoto M., Higashimura T., Deng Y.X. Cationic polymerization of β‐pinene with the AlCl3/SbCl3 binary catalyst: Comparison with α‐pinene polymerization. J. Appl. Polymer Sci. 1996. V. 61. P. 1011-1016. DOI: 10.1002/(SICI)1097-4628(19960808)61:6<1011::AID-APP15>3.0.CO;2-Z.

Takagi K., Yamauchi K., Murakata H. Halogen Bonding-Mediated Controlled Cationic Polymerization of Isobutyl Vinyl Ether: Expanding the Catalytic Scope of 2-Iodoimidazolium Salts. Chem. Eur. J. 2017. V. 23. P. 9495-9500. DOI: 10.1002/chem.201702455.

Moulkheir A., Belbachir M., Rahmouni A. Selective Synthesis, Characterization and Kinetics Studies of poly(α-Methyl styrene) induced by Maghnite-Na+ Clay (Algerian MMT). Bulletin of Chemical Reaction Engineering and Catalysis. 2016. V. 11. P. 376-388. DOI: 10.9767/bcrec.11.3.578.376-388.

Rahmouni A., Belbachir M. Green synthesis of cationic polyacrylamide composite catalyzed by an ecologically catalyst clay called maghnite-H+ under microwave irradiation. Bull. Chem. React. Eng. Catal. 2016. V. 11. P. 170-175. DOI: 10.9767/bcrec.11.2.543.170-175.

Ferrahi M.I., Belbachir M. Polycondensation of Tetrahydrofuran with Phthalic Anhydride Induced By a Proton Exchanged Montmorillonite Clay. Internat. J. Molec. Sci. 2003. V. 4. P. 312-325. DOI: 10.3390/i4060312.

Higashimura T., Tanaka A., Miki T., Okamura S. Copolymerization of trioxane with styrene catalyzed by BF3·O(C2H5)2. J. Polymer Sci. Part A-1: Polymer Chem. 1967. V. 5. P. 1927-1936. DOI: 10.1002/pol.1967.150050810.

Belbachir M., Bensaoula A. Composition and method for catalysis using bentonite. US Patent. 2006. 7,094,823 (B2).

Butman M.F., Ovchinnikov N.L., Karasev N.S. Electric conductivity of Li+ -doped pillared montmorillonite. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2017. V. 60. N 9. P. 82-91 (in Russian). DOI: 10.6060/tcct.2017609.5591.

Rhodes C.N., Brown D.R. Catalytic activity of acid-treated montmorillonite in polar and non-polar reaction media. Catal. Lett. 1994. V. 24. P. 285-291. DOI: 10.1007/BF00811801.

Ferrahi M.I., Belbachir M. Cyclic polyesters prepared by poly (oxypropylene oxymaloyl) ring-chain reactions. Exp. Polymer Lett. 2007. V. 01. P. 24-26. DOI: 10.3144/expresspolymlett.2007.5.

Adler M., Mader U.K., Waber H.N. High-pH alteration of argillaceous rocks: an experimental study. Schweizerische Mineralogische und Petrographische Mitteilungen. 1999. V. 79. P. 445-454.

Baldwin D.R., Marshall W.J. Heavy metal poisoning and its laboratory investigation. Ann. Clin. Biochem. 1999. V. 36. P. 267-300. DOI: 10.1177/000456329903600301.

Chmielarz L., Kowalczyk A., Wojciechowska M., Boroń P., Dudek B., Michalik M. Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process. Chem. Papers. 2014. V. 68. P. 1219-1227. DOI: 10.2478/s11696-013-0463-0.

Modabberi S., Namayandeh A., López-Galindo A., Viseras C., Setti M., Ranjbaran M. Characterization of Ira-nian bentonites to be used as pharmaceutical materials. Appl. Clay Sci. 2015. V. 116–117. P. 193-201. DOI: 10.1016/j.clay.2015.03.013.

Ferrahi M.I., Belbachir M. Preparation of Poly(oxybutyleneoxymaleoyl) Catalyzed by a Proton Ex-changed Montmorillonite Clay. Molecules. 2004. V. 09. P. 968-977. DOI: 10.3390/91100968.

D’Ascenzio M., Carradori S., De Monte C., Secci D., Ceruso M., Supuran C.T. Design, synthesis and evaluation of N-substituted saccharin derivatives as selective inhibitors of tumor-associated carbonic anhydrase XII. Bioorg. Med. Chem. 2014. 22(6). Р. 1821-1831. DOI: 10.1016/j.bmc.2014.01.056.

Aslam M.A.S., Mahmood S., Shahid M., Saeed A., Iqbal J. Synthesis, biological assay in vitro and molecular docking studies of new Schiff base derivatives as potential urease inhibitors. Eur. J. Med. Chem. 2011. 46(11). P. 5473-5479. DOI: 10.1016/j.ejmech.2011.09.009.

Somogyi L. Synthesis, Oxidation and Dehydrogenation of Cyclic N,O- and N,S-Acetals. Part III. [1,2] Transfor-mation of N,O-Acetals: 3-Acyl-1,3,4-Oxadiazolines. J. Heterocycl. Chem. 2007. 44(6). Р. 1235-1246. DOI: 10.1002/jhet.5570440603.

Singh A., Sahoo S.K., Trivedi D.R. Colorimetric anion sensors based on positional effect of nitro group for recognition of biologically relevant anions in organic and aqueous medium, insight real-life application and DFT studies. Mol. Biomol. Spectrosc. 2018. V. 188. P. 596-610. DOI: 10.1016/j.saa.2017.07.051.

Abbas A., Hussain S., Hafeez N., Badshah A., Hasan A., Lo K.M. (E)-4-Nitrobenzaldehyde oxime. Acta Cryst. 2010. 66(5). P.1130-1138. DOI: 10.1107/S1600536810013978.

Khaligh N.G., Mihankhah T., Johan M.R. An alternative, practical, and ecological protocol for synthesis of arylidene analogues of Meldrum’s acid as useful intermediates. Res. Chem. Intermed. 2019. V. 45. P. 3291-3300. DOI: 10.1007/s11164-019-03796-2.

Shults E.E. Semenova E.A., Johnson A.A., Bondarenko S.P., Bagryanskaya I.Y., Gatilov Y.V., Tolstikova G.A. Synthesis and HIV-1 integrase inhibitory activity of spiroundecane(ene) derivatives. Bioorg. Med. Chem. Lett. 2007. 17(5) P. 1362-1368. DOI: 10.1016/j.bmcl.2006.11.094.

Опубликован
2021-07-28
Как цитировать
Hamam, N., Ferrahi, M. I., Belbachir, M., & Meghabar, R. (2021). СИНТЕЗ ПОЛИ (СТИРОЛ-СО-1,3,5-ТРИОКСАНА) ЭКОЛОГИЧЕСКИМ КАТАЛИЗАТОРОМ МОНТМОРИЛЛОНИТ МАГНИТ-NA+ КАТАЛИЗАТОР. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ», 64(8), 72-78. https://doi.org/10.6060/ivkkt.20216408.6434
Раздел
ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ неорг. и органических веществ, теоретические основы