MATHEMATICAL MODELING OF THE BULK MATERIALS MIXING PROCESS IN A DRUM-BLADE MIXER
Abstract
A mathematical model of the bulk materials mixing process in a gravity-flow apparatus with additional mixing elements is proposed. The mixer includes a cylindrical housing rotating around a horizontal axis, inside of which there are steps with working blades and annular partitions, which provide both direct movement of material along the axis of rotation from the loading nozzle to the receiving hopper, and partial movement of material in the opposite direction, which makes it possible to increase the time stay of the mixture inside the device. To simulate the mixing process, the method of discrete elements is used, which is based on the representation of a bulk material in the form of a set of representative volumes containing a large number of particles interacting with each other and exposed to the action of the working bodies of the mixer and external force fields. The representative volumes sizes and masses are proportional to the sizes and masses of the particles of the mixture components. Their interaction includes the force of inelastic impact directed along the line connecting their centers, and the force of tangential friction lying in the plane perpendicular to this line and directed against the relative velocity projection onto the plane. The absolute values of these forces are proportional to the weight of the representative volumes, exponentially decrease when the centers of mass are removed from each other by a distance exceeding the sum of their sizes, and exponentially increase when the centers approach, causing mutual overlap of the representative volumes. The force effect on the representative volumes when it comes into contact with the structural elements of the mixer is simulated in a similar way. To check the adequacy of the proposed model, full-scale experiments were carried out on mixing rapeseed and millet in the studied device. Comparison of the calculation results according to the proposed model with the data of experimental studies indicates their satisfactory convergence.
For citation:
Cherpitskiy S.N., Korolev L.V., Tarshis M.Yu. Mathematical modeling of the bulk materials mixing process in a drum-blade mixer. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 9. P. 112-120. DOI: 10.6060/ivkkt.20226509.6504.
References
Cherpitskii S.N., Tarshis M.Y., Korolev L.V., Kapranova A.B. An Investigation of the Process of Mixing of Bulk Materials in a Drum-Blade Mixer. Chem. Petrol. Eng. 2020. N 1. Р. 3–10. Khim. Neftegas. Mashinostr. 2020. 56. P. 3–10 (in Russian). DOI: 10.1007/s10556-020-00731-w.
Tarshis M.Yu., Cherpitsky S.N., Korolev L.V., Kapranova A.B. Experimental studies of a drum-blade mixer of bulk materials. Vestn. Tamb. Gos. Tekhn. Un-ta. 2019. V. 25. N 4. P. 589-594 (in Russian). DOI: 10.17277/vestnik.2019.04.
Gatumel C., Berthiaux H., Mizonov V. Industrial mixing of particulate solids: Present practices and future evolution. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2018. V. 61. N 12. Р. 4–13. DOI: 10.6060/ivkkt.20186112.5896.
Bobkov S.P., Bobkova E.S., Rybkin V.V. Use of discrete stochastic models in chemical kinetics. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2012. V. 55. N 9. P. 35-39 (in Russian).
Mitrofanov A.V., Ogurtsov A.V., Magnitskiy V.A., Mi-zonov V.E., Ovchinnikov L.N. Mathematical model of a fluidized bed of continuous action. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2012. V. 55. N 10. P. 96-98 (in Russian).
Durnev A.S., Pershin V.F. Application of the theory of Markov chains to modeling the mixing process in a smooth rotating drum. Vestn. Tamb. Gos. Tekhn. Un-ta. 2013. V. 19. N 4. P. 783-792 (in Russian).
Ammarcha C., Gatumel C., Dirion J.L., Cabassud M., Mizonov V., Berthiaux H. Powder flow and mixing in a continuous mixer operating in either transitory or steady-state regimes: Mesoscopic Markov chain models. Powder Technol. 2019. V. 346. Р. 116-136. DOI: 10.1016/j.powtec.2019.01.085.
Liu Y., Gonzalez M., Wassgren C. Modeling granular material blending in a rotating drum using a finite element method and advection-diffusion equation multi-scale model. AIChE J. 2018. V. 64. N 9. P. 3277-3292. DOI: 10.1002/aic.16179.
Schlick C.P., Fan Y., Umbanhowar P.B., Ottino J.M., Lueptow R.M. Granular segregation in circular tumblers: Theoretical model and scaling laws. J. Fluid Mechan. 2015.V. 765. Р. 632-652. DOI: 10.1017/jfm.2015.4.
Fan Y., Schlick C.P., Umbanhowar P.B., Ottino J.M., Lueptow R.M. Modelling size segregation of granular materials: The roles of segregation, advection and diffusion. J. Fluid Mechan. 2014. V. 741. Р. 252-279. DOI: 10.1017/jfm.2013.680.
Zheng Q.J., Yu A.B. Modelling the granular flow in a rotating drum by the Eulerian finite element method. Powder Technol. 2015.V. 286. Р. 361-370. DOI: 10.1016/j.powtec.2015.08.025.
Bai L., Zheng Q.J., Yu A.B. FEM simulation of particle flow and convective mixing in a cylindrical bladed mixer. Powder Technol. 2017. V. 313. Р. 175-183. DOI: 10.1016/j.powtec.2017.03.018.
Naumenko Y. Modeling a flow pattern of the granular fill in the cross section of a rotating chamber. East.-Eur. J. Enterprise Technol. 2017. V. 5. N 1(89). Р. 59–69. DOI: 10.15587/1729-4061.2017.110444.
Nakamura H., Fujii H., Watano S. Scale-up of high shear mixer-granulator based on discrete element analysis. Powder Technol. 2013. V. 236. Р. 149-156. DOI: 10.1016/j.powtec.2012.03.009.
Chan E.L., Washino K., Ahmadian H., Bayly A., Alam Z., Hounslow M.J., Salman A.D. Dem investigation of horizontal high shear mixer flow behaviour and implications for scale-up. Powder Technol. 2015. V. 270 (PB). Р. 561-568. DOI: 10.1016/j.powtec.2014.09.017.
Amritkar A., Deb S., Tafti D. Efficient parallel CFD-DEM simulations using OpenMP. J. Comput. Phys. 2014. V. 256. Р. 501-519. DOI: 10.1016/j.jcp.2013.09.007.
Lu G., Third J.R., Müller C.R. Discrete element models for non-spherical particle systems: From theoretical developments to applications. Chem. Eng. Sci. 2015. V. 127. Р. 425–465. DOI: 10.1016/j.ces.2014.11.050.
Radeke C.A., Glasser B.J., Khinast J.G. Largescale powder mixer simulations using massively parallel GPUar-chitectures. Chem. Eng. Sci. 2010. V. 65 (24). Р. 6435-6442. DOI: 10.1016/j.ces.2010.09.035.
Shigeto Y., Sakai M. Parallel computing of discrete element method on multicore processors. Particuology. 2011.V. 9. N 4. Р. 398-405. DOI: 10.1016/j.partic.2011.04.002.
Lu L., Xu Y., Li T., Benyahia S. Assessment of different coarse graining strategies to simulate polydisperse gassolids flow. Chem. Eng. Sci. 2018. V. 179. Р. 53-63. DOI: 10.1016/j.ces.2018.01.003.
Lommen S., Mohajeri M., Lodewijks G., Schott D. DEM particle upscaling for large-scale bulk handling equipment and material interaction. Powder Technol. 2019. V. 352. Р. 273-282. DOI: 10.1016/j.powtec.2019.04.034.
Kapranova A.B. Stochastic Description of the Formation of Flows of Particulate Components in Apparatuses with Brush Elements. Theor. Found. Chem. Eng. 2018. V. 52. N 6. Р. 1004-1018. DOI: 10.1134/S0040579518050330.
Bierwisch C., Kraft T., Riedel H., Moseler M. Three-dimensional discrete element models for th egranular statics and dynamics of powders in cavity filling. J. Mechan. Phys. Solids. 2009. V. 57. P. 10–31. DOI: 10.1016/j.jmps.2008.10.006.
Zhang X., Vu-Quoc L. An accurate elastoplastic frictional tangential force–displacement model for granular-flow simu-lations: Displacementdriven formulation. J. Comput. Phys. 2007. V. 225. P. 730–752. DOI: 10.1016/j.jcp.2006.12.028.