ВОЗОБНОВЛЯЕМЫЕ ПРИРОДНЫЕ СЫРЬЕВЫЕ РЕСУРСЫ, СТРОЕНИЕ, СВОЙСТВА, ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ
Аннотация
В обзоре рассмотрены современные представления сравнительно нового направления «зеленой химии» в области химической переработки возобновляемого природного растительного сырья. Для ряда процессов показаны пути, методы и некоторые технологические аспекты получения новых соединений и реагентных систем, биоразлагаемых композиций и продуктов «зеленой химии», востребованных в различных секторах экономики, промышленности и жизнеобеспечении общества. Приведены результаты анализа российских и мировых запасов лесных ресурсов по авторитетным современным источникам и предложения по их сохранению и восстановлению. Описаны проблемы биорефайлинга растительного сырья, одним из которых является валоризация лигнина – ароматического компонента химического состава древесины. Предложено получение биоразлагаемых систем и композиций на основе побочного продукта переработки древесины лигносульфоната нейтрального способа получения, характеризующегося высоким содержанием полисахаридов в составе гемицеллюлоз углеводной части древесины после выделения целлюлозы. Показаны пути применения модифицированных продуктов целлюлозы, как ингибиторов солеотложения и газогидратообразования, области их применния в нефтепромысловой химии. Лигнин и другие составляющие растительных ресурсов уже давно являются основой различных классов волокон природного происхождения, в том числе растительного и животного, искусственных волокон. В секторе создания материалов с новыми свойствами, обладающими широким спектром практического применения, в обзоре описано получение полилактида ПЛА, синтезированного из молочной кислоты. Этот полимер можно рассматривать как современную альтернативу многим синтетическим полимерам, получаемым из продуктов нефтепереработки. Для продуктов взаимодействия лактата аммония и н-бутилового спирта описана кинетическая модель для получения бутиллактата - промежуточного продукта зеленой химии. Приведены результаты исследования специфического класса соединений – ионных жидкостей – традиционно рассматриваемых в качестве так называемых «зеленых растворителей». Предложен подход к созданию математической модели методом расчета адсорбционных характеристик для оценки эффективности систем и композици на основе биоразлагаемых полимеров направления «зеленой химии».
Литература
Movsumzade E.M. Oil legend of the countries of the Caspian region. M.: Obrakadnauka. 2020. 164 p. (in Rus-sian).
Vernadsky V.I. Selected works on the history of science. M.: Nauka. 1981. 359 p. (in Russian).
Teptereva G.A., Shavshukova S.Yu., Chetvertneva I.A. Development of drilling techniques and technologies up to the middle of the XX century. Istoriya Pedagogika Estestvoznaniya. 2019. N 1. P. 41-44 (in Russian).
Kirillin L.L. Pages of the history of science and technology. M.: Nauka. 1986. 164 p. (in Russian).
Kister E.G. Chemical treatment of drilling fluids. M.: Nedra. 1972. 392 p. (in Russian).
Chetvertneva I.A., Teptereva G.A., Shavshukova S.Yu. Formation and development of methods of drilling wells in Russia and abroad. Istoriya Pedagogika Estestvoznaniya. 2019. N 3. P. 41-45 (in Russian).
Chetvertneva I.A., Teptereva G.A., Shavshukova S.Yu., Konesev V.G. Appearance, development and im-provement of various types of drilling fluids in world and domestic practice Istoriya Pedagogika Estestvoznaniya. 2019. N 2. P. 25-29 (in Russian).
Chetvertneva I.A., Karimov O.Kh., Mamedova P.Sh., Teptereva G.A. Stages of application of natural polymer components of polysaccharide nature in oilfield chemis-try. Transport Khranenie Nefteproduktov Uglevodorod-nogo Syr’ya. 2020. N 2. P. 47-52 (in Russian).
Strakhov V.V., Pisarenko A.I., Borisov V.A. Forests of the world and Russia. Ispolzovanie Okhrana Prirodnykh Resursov Rossii. 2001. N 9. P. 49-63 (in Russian).
Filipchuk A.N., Moiseev B.N., Medvedeva M.A. Comparative characteristics of forests according to the global forest Resources assessment. Lesokhoz. 2017. N 3. P. 75-91 (in Russian).
Danilets A.V. Forest and forest management: sustainable development and conservation of natural potential. Geopoliticheskiy Monitoring Rossii. 2017. N 31. P. 34-78 (in Russian).
Tatarkin A.I., Loginov V.G. Methodological issues of forest assessment as an ecosystem. Upravlenets. 2014. N 6. P. 4-9 (in Russian).
Tretyakov A.G. Assessment of economic accessibility of forest resources and processing of low-quality wood. Vestn. Omsk. Un-ta. Ser. Economika. 2015. N 1. P. 142-149 (in Russian).
Petrov A.P., Tretyakov A.G., Lobovikov M.A. Strategic forest planning: federal and regional priorities. Lesnoe Khoz-vo. 2014. N 2. P. 13 (in Russian).
Encyclopedia of Forestry. M.: VNIILM. 2006. V. 2. 416 p. (in Russian).
Tretyakov A.G. Assessment of the economic availability of forest resources for the conditions of the Arkhangelsk region. Economika Upravlenie. 2015. N 2. P. 47-51 (in Russian).
Kolesnikova A.V. Forest management in the territory of Siberia and the Far East: state and dynamics. Vestn. Za-baykal. Gos. Un-ta. 2015. N 6 (121). P. 127-142 (in Rus-sian).
Zherdeva A.V. Improving the efficiency of the timber industry in the Siberian region. Rossiyskoe Predprini-matelstvo. 2010. N 8-2. P. 93-97 (in Russian).
Davydova G.V., Kostyleva S.V. Technological evolution of production of wood waste products, their efficiency. Baikal Res. J. 2017. N 8(4). P. 22-25 (in Russian). DOI: 10.17150/2411-6262.2017.8(4).22.
Mikhailov A.N. Chemistry of tanning substances and tanning processes. M.: GIZ Legprom. 1953. 795 p. (in Russian).
Blazhey A., Shuty L. Phenolic compounds of plant origin. M.: Mir. 1977. 239 p. (in Russian).
Obolenskaya A.V., Leonovich A.A. Chemistry of wood. L.: LTA. 1989. 89 p. (in Russian).
Nikitin N.I. Chemistry of wood and cellulose. M.: Akad. Nauk SSSR. 1962. 714 p. (in Russian).
Chetvertneva I.A., Karimov O.Kh., Teptereva G.A., Ismakov R.A. Wood processing products as an alterna-tive to petroleum hydrocarbons. NefteGazoKhimiya. 2019. N 3-4. P. 35-40 (in Russian).
Teptereva G.A. Formation and development of lignosul-fonate production and their application in petrochemistry. Ufa: UGNTU. 2018. 109 p. (in Russian).
Sarkanen K.V., Ludwig K.H. Lignins: structure, properties and reactions. M.: Lesnaya prom-st’. 1981. 402 p. (in Russian).
Gierer D., Gellerstedt G. Biochemistry of lignins and cellulose. M.: Mir. 1987. 73 p. (in Russian).
Jongerius A.L. Conversion of Lignin for the Production of Aromatics. Utrecht: Gildeprint Drukkerijen. 2013. 244 p.
Tkacheva N.I., Morozov S.V., Grigoriev I.A. Modification of cellulose is a promising direction in the creation of new materials. Vysokomolekul. Soed. Ser. B. 2013. V. 55. N 8. P. 1086-1107 (in Russian). DOI: 10.1134/S1560090413070063.
Galbreich L.S. Cellulose and its derivatives. Soros. obrazovat. Zhurn. 1996. N 11. P. 47-53.
Lakina N.V., Doluda V.Yu., Sulman E.M., Shkileva I.P., Burmatova O.S. Study of the method of processing cel-lulose and lignin-containing raw materials with the use of cellulolytic enzymes. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2018. V. 61. N 1. P. 78-83 (in Russian). DOI: 10.6060/tcct.20186101.5454
Dudkin N.S., Gromov V.S., Vedernikov N.A. Hemicellulose. R.: Zinatne. 1991. 488 p. (in Russian).
Movsumzade E.M., Aliev G.R., Karakhanov R.A., Biryukova D.A. An important product of the national economy. Baku: Znanie. 1986. 54 p.
Chetvertneva I.A., Karimov O.Kh., Teptereva G.A., Tivas N.S., Movsumzade E.M., Babaev E.R. Wood components as sources of pentosan-containing raw materials for the synthesis of useful compounds, products and reagents. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 3. P. 107-115 (in Russian). DOI: 10.6060/ivkkt.20216403.6363.
Karimov O.Kh., Kolchina G.I., Teptereva G.A., Movsumzade E.M. Chetvertneva I.A. Study of structural features and thermodynamic parameters of cellulose and derivatives. Promyshl. Pr-vo Ispolz. Elastomerov. 2019. N 4. P. 14-18 (in Russian).
Gravitis Ya.A., Ozol-Kalnin V.G. Structure of lignin as a polymer. Structure and formation of lignin from the point of view of the theory of branching processes. Khimiya Drevesiny. 1977. N 3. P. 24-30 (in Russian).
Browns F.E., Browns D.A. Chemistry of lignin. M.: Le-snaya prom-t’. 1964. 415 p. (in Russian).
Tuvers G. H. The nature of lignin. M.: Mir. 1978. P. 25. 172. (in Russian).
Freudenberg K. Lignin Modern methods of plant analysis. Berlin: Springer. 1955. V. 3. P. 499-516. DOI: 10.1007/978-3-642-64958-5_13.
Hodasova L., Jablonsky M., Skulcova A., Haz A. Lignin, potential products and their market value. Wood Res. 2015. V. 60(6). P. 973–986.
Kuznetsov B.N., Kuznetsova S.A., Tarabanko V.E. New methods for obtaining chemical products of biomass of Siberian trees. Ros. Khim. Zhurn. 2004. V. XLVIII. N 3. P. 4-20 (in Russian).
Deineko I.P. Utilization of lignins: achievements, prob-lems and prospects. Khimiya Rastit. Syr’ya. 2012. N 1. P. 5-20 (in Russian).
Shen R, Tao L, Yang B. Techno-economic analysis of jetfuel production from biorefinery waste lignin. Biofu-els, Bioproducts Biorefining. 2019. V. 13. N 3. P. 486–501. DOI: 10.1002/bbb.1952.
Vildanov F.Sh., Latypova F.N., Chanyshev R.R., Nikolaeva S.V. Modern methods of bioethanol production. Bashkir. Khim. Zhurn. 2011. V. 18. N 2. P. 128-134 (in Russian).
Bar-On Y.M., Phillips R., Milo R. The biomass distribution on Earth. PNAS. 2018. V. 115 (25). P. 6506–6511. DOI: 10.1073/pnas.1711842115.
Feofilova E.P., Mysyakina I.S. Lignin: chemical structure, biodegradation, practical use. Prikladn. Bio-khim.Mikrobiol. 2016. V. 52. N 6. P. 559-569 (in Rus-sian). DOI: 10.1134/S0003683816060053.
Karimov O.Kh., Teptereva G.A., Chetvertneva I.A., Movsumzade E.M. Development of chemistry and tech-nology of lignin biopolymer. Promyshl. Pr-vo Ispolz. Elastomerov. 2020. N 1. P. 25-39 (in Russian).
Teptereva G.A., Konesev G.V., Ismakov R.A. Funda-mentals of obtaining and applying lignosulfonates in drill-ing technology. Berlin: LAP LAMBERT Academic Publ. 2017. 70 p. (in Russian).
Movsumzade E.M., Teptereva G.A., Chetvertneva I.A., Karimov O.H. Prospects for the use of wood raw materi-als processing products. M.: Obrakademnauka. 2021. 160 p. (in Russian).
Neverova N. A., Levchuk A. A., Ostroukhova L. A. Distribution of extractive substances in Siberian larch wood. Khim. Rastit. Syr’ya. 2012. N 4. P. 91-100 (in Russian).
Butylkina A.I., Levdonsky V.A., Kuznetsov B.N. Study of the composition of extractive substances isolated from pine bark by various methods. Khim. Rastit. Syr’ya. 2011. N 2. P. 77-82 (in Russian).
Badogina A.I., Tretyakov S.I., Kutakova N.A. Composition of birch bark bast extracts. Khim. Rastit. Syr’ya. 2016. N 1. P. 29-345 (in Russian).
Bazarnova N.G., Tikhomirova L.I., Frolova N.S., Mikushina I.V. Isolation and analysis of extractive sub-stances of white lapchatka grown under different conditions. Khim. Rastit. Syr’ya. 2016. N 1. P. 43-51 (in Russian). DOI: 10.1134/S1068162017070032.
Vardanyan L.R., Atabekyan L.V., Hayrapetyan S.A., Vardanyan R.L. The effect of solvents on the degree of antioxidant extraction from plant raw materials. Khim. Rastit. Syr’ya. 2018. N 1. P. 83-88 (in Russian).
Bazarnova N.G., Tikhomirova L.I., Sinitsyna A.A., Afasenkova I.V. Comparative analysis of the chemical composition of plant raw materials. Khim. Rastit. Syr’ya. 2017. N 4. P. 137-144 (in Russian). DOI: 10.14258/jcprm.2017042741.
Bosieva O.I., Nartikoeva R.R. Seasonal dynamics of starch content in woody plants. Izv. Gorsky gos. Agrar. Univ. (Vladikavkaz). 2014. V. 51. N 4. P. 407-410 (in Russian).
Ostroukhova L.A., Raldunin V.A., Babkin V.A. Study of the chemical composition of the resin of larch wood. Khim. Rastit. Syr’ya. 2011. N 4. P. 83-87 (in Russian).
Noskova O.A., Fedoseev M.S. Chemistry of wood and synthetic polymers. Perm: Izd-vo Perm. gos. Tekhn. un-ta. 2007. 53 p. (in Russian).
Neverova N.A., Medvedeva E.N., Levchuk A.A., Bab-kin V.A. Study of Gmelin larch gum. Khim. Rastit. Syr’ya. 2017. N 2. P. 137-141 (in Russian).
Shipunov B.P., Koptev V.E., Markin V.I. Features of the rheology of agar-agar solutions. Khim. Rastit. Syr’ya. 2018. N 1. P. 53-60 (in Russian). DOI: 10.14258/jcprm.2018013720.
Moiseev N.A. Forest management and the forest sector of the Russian economy: conditions and ways to overcome the crisis. Lesnoe Khoz-vo. 2014. N 2. P. 10-12 (in Russian).
Berlin M., Balakshin M. Industrial lignins, analysis, properties and applications. Issled. Obl. Bioenergetiki: Dostizheniya Primenenie. 2014. V. 18. P. 315–336 (in Russian). DOI: 10.1016/B978-0-444-59561-4.00018-8.
Azadi P., Inderwildi O.R., Farnood R., King D.A. Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renew Sustain Energy Rev. 2013. V. 21. P. 506–523. DOI: 10.1016/j.rser.2012.12.022.
Rabinovich M.L. Wood hydrolysis industry in the Soviet Union and Russia: What can be learned from history? Proceedings of NWBC. Ed. by A Rautakivi. Oral presentations. Helsinki. Finland. 2–4 September 2009. P. 111–120.
Ragauskas A.J., Beckham G.T., Biddy M.J., Chandra R., Chen F., Davis M., Davison B.H., Dixon R.A., Gilna P., Keller M., Langan P., Naskar A.K., Saddler J.N., Tschaplinski T.J., Tuskan G.A., Wyman C.E. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014. V. 344. P. 1246843-1-1246843-10. DOI: 10.1126/science.1246843.
Rinaldi R., Jastrzebski R., Clough M.T., Ralph J., Kennema M., Bruijnincx P.C.A., Weckhuysen B.M. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem. Int. Ed. 2016. V. 55. P. 8164–8215. DOI: 10.1002/anie.201510351.
Galkin M.V., Samec J.S. Lignin valorization through catalytic lignocellulose fractionation: a fundamental plat-form for the future biorefinery. ChemSusChem. 2016. V. 9. P. 1544 – 1558. DOI: 10.1002/cssc.201600237.
Kärkäs M.D., Matsuura B.S., Monos T.M., Magallanes G., Stephenson C.R. Transition-metal catalyzed valoriza-tion of lignin: the key to a sustainable carbon-neutral future. Org. Biomol. Chem. 2016. V. 14. P. 1853–1914. DOI: 10.1039/C5OB02212F.
Evstigneyev E.I., Shevchenko S.M. Lignin valorization and cleavage of arylether bonds in chemical processing of wood: a minireview. Wood Sci. Technol. 2020. V. 54. P. 787–820. DOI: 10.1007/s00226-020-01183-4.
Evstigneyev E.I. Selective depolymerization of lignin. Assessment of yields of monomeric products. Wood Chem. Technol. 2018. V. 38. V. P. 409-415. DOI: 10.1080/02773813.2018.1500607.
Pepper J.M., Lee Y.W. Lignin and related compounds. A comparative study of catalysts for lignin hydrogenolysis. Canad. J. Chem. 1969. V. 47. P. 723–727. DOI: 10.1139/v69-118.
Nahum L.S. Delignification of wood by hydrogenation in presence of dicobalt octacarbonyl. Indust. Eng. Chem. Product Res. Develop. 1965. V. 42. P. 71–74. DOI: 10.1021/i360014a003.
Galkin M.V., Samec J.S. Selective route to 2-propenyl aryls directly from wood by a tandem organosolv and palladium-catalysed transfer hydrogenolysis. ChemSus-Chem. 2014. V. 7. P. 2154–2158. DOI: 10.1002/cssc.201402017.
Torr K.M., van de Pas D.J., Cazeils E., Suckling I.D. Mild hydrogenolysis of in situ and isolated Pinus radiata lignins. Biores. Technol. 2011. V. 102. P. 7608–7611. DOI: 10.1016/j.biortech.2011.05.040.
Parsell T., Yohe S., Degenstein J., Jarrell T., Klein I., Gencer E., Abu-Omar M.M. A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass. Green Chem. 2015. V. 17. P. 1492–1499. DOI: 10.1039/C4GC01911C.
Liu Y., Chen L., Wang T., Zhang Q., Wang C., Yan J., Ma L. One-pot catalytic conversion of raw lignocellulosic biomass into gasoline alkanes and chemicals over LiTa-MoO6 and Ru/C in aqueous phosphoric acid. ACS Sust. Chem. Eng. 2015. V. 3. P. 1745–1755. DOI: 10.1021/acssuschemeng.5b00256.
Van den Bosch S., Schutyser W., Koelewijn S.-F., Renders T., Courtin C.M., Sels B.F. Tuning the lignin oil OH-content with Ru and Pd catalysts during lignin hydro-genolysis on birch wood. Chem. Commun. 2015. V. 51(67). P. 13158–13161. DOI: 10.1039/c5cc04025f.
Yan N., Zhao C., Dyson P.J., Wang C., Liu L., Kou Y. Selective degradation of wood lignin over noble-metal catalysts in a two-step process. ChemSusChem. 2008. V. 1. P. 626–629. DOI: 10.1002/cssc.200800080.
Li C., Zheng M., Wang A., Zhang T. One-pot catalytic hy-drocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin. Energy Environ. Sci. 2012. V. 5. Р. 6383 –6390. DOI: 10.1039/C1EE02684D.
Song Q., Wang F., Cai J., Wang Y., Zhang J., Yua W., Xu J. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process. Energy Environ. Sci. 2013. N 6. Р. 994–1007. DOI: 10.1039/C2EE23741E.
Konnerth H., Zhang J., Ma D., Prechtl M. H., Yan N. Base promoted hydrogenolysis of lignin model com-pounds and organosolv lignin over metal catalysts in wa-ter. Chem. Eng. Sci. 2015. V. 123. Р. 155−163. DOI: 10.1016/j.ces.2014.10.045.
Shao Y., Xia Q. Dong L., Liu X., Han X., Parker S.F., Cheng Y., Daemen L.L., Ramirez-Cuesta A.J., Yang S. Selective production of arenes via direct lignin upgrading over a Niobium-based catalyst. Nature Commun. 2017. V. 8. P. 16104 (1-9). DOI: 10.1038/ncomms16104.
Fengel D, Wegener G. Wood (chemistry, ultrastructure, reactions). M.: Lesnaya promst’. 1988. 512 p. (in Rus-sian).
Gierer J. Formation and involvement of superoxide (О2 /НО2•) and hydroxyl (НО•) radicals in TCF bleaching processes: a review. Holzforschung. 1997. V. 51(1). Р. 34-46. DOI: 10.1515/hfsg.1997.51.1.34.
Bruijnincx P., Weckhuysen B., Gruter G-J, Westenbroek A. Lignin valorisation. The importance of a full value chain approach. Utrecht University. Platform Agro-Paper-Chemistry. 2016. Р. 1-22.
Luo J., Melissa P., Zhao W., Wang Z., Zhu Y. Selective lignin oxidation towards vanillin in phenol media. Chem. Select. Commun. 2016. V. 1. Р. 4596–4601. DOI: 10.1002/slct.201600758.
Tarabanko V.E., Hendogina Y.V., Petuhov D.V., Pervishina E.P. On the role of retro-aldol reaction in the pro-cess of lignin oxidation into vanillin. Kinetics of the vanillideneacetone cleavage in alkaline media. React. Kinet. Catal. Lett. 2000. V. 69. Р. 361−368. DOI: 10.1023/A:1005620521240.
Tarabanko V.E., Petukhov D.V., Selyutin G.E. New mechanism for the catalytic oxidation of lignin to vanillin. Kinet. Catal. 2004. V. 45. Р. 569−577 (in Russian). DOI: 10.1023/B:KICA.0000038087.95130.a5.
Tarabanko V.E., Tarabanko N. Catalytic oxidation of lignins into the aromatic aldehydes: general process trends and development prospects. Int. J. Mol. Sci. 2017. V.18. Р. 2421-2450 (in Russian). DOI: 10.3390/ijms18112421.
Rahimi A., Azarpira A., Kim H., Ralph J., Stahl S.S. Chemoselective metal-free aerobic alcohol oxidation in lignin. J. Am. Chem. Soc. 2013. V. 135. Р. 6415−6418. DOI: 10.1021/ja401793n.
Rahimi A., Ulbrich A., Coon J.J., Stahl S.S. Formicacid-induced depolymerization of oxidized lignin to aro-matics. Nature. 2014. V. 515. Р. 249-252. DOI: 10.1038/nature13867.
Lancefield C.S., Ojo O.S., Tran F., Westwood N.J. Isolation of functionalized phenolic monomers through se-lective oxidation and C-O bond cleavage of the β-O-4 linkages in lignin. Angew Chem. Int. Ed. 2015. V. 54. Р. 258−262. DOI: 10.1002/anie.201409408.
Evstigneyev E., Kalugina A.V., Ivanov A.Yu., Vasilyev A.V. Contents of α-O-4 and β-O-4 bonds in native lignin and isolated lig-nin preparations. Wood Chem. Technol. 2017. V. 37(4). Р. 294–306 (in Russian). DOI: 10.1080/02773813.2017.1297832.
Zhang C., Li H., Lu J., Zhang X., Macarthur K.E., Heggen M., Wang F. Promoting lignin depolymerization and restraining the condensation via an oxidation-hydrogenation strategy. ACS Catal. 2017. V. 7. Р. 3419−3429. DOI: 10.1021/acscatal.7b00148.
Mainka H., Täger O., Körner O., Hilfert L., Busse S., Edelmann F.T., Herrmann A.S. Lignin – an alternative precursor for sustainable and costeffective automotive carbon fiber. Mater. Res. Technol. 2015. V. 4. P. 283–296. DOI: 10.1016/j.jmrt.2015.03.004.
Eberle C., Albers T., Albers C., Webb D. Commercialization of New Carbon Fiber Materials Based on Sustaina-ble Resources for Energy Applications. 2013. P. 1-24. DOI: 10.2172/1072149.
Kadla J.F., Kubo S., Venditti R.A., Gilbert R.D., Compere A.L., Griffith W. Lignin-based carbon fibers for composite fiber applications. Carbon. 2002. V. 40. P. 2913-2920. DOI: 10.1016/S0008-6223(02)00248-8.
Sevastyanova O., Helander M., Chowdhury S., Lange H., Wedin H., Zhang L., Ek M., Kadla J.F., Crestini C., Lindström M.E. Tailoring the molecular and thermo–mechanical properties of kraft lignin by ultrafiltration. Appl. Polym. Sci. 2014. V. 131. P. 40799 (1-11). DOI: 10.1002/app.40799.
Eckert R.C., Abdullah Z. Carbon fibers from kraft soft-wood lignin. U.S. Patent 7678358. 2010.
Wohlmann B., Woelki M., Ebert A., Engelmann G., Fink H.P. Lignin derivative, shaped body comprising the derivative and carbon fibers produced from the shaped body.US Patent 0274612. 2010.
Zhang M., Ogale A.A. Carbon fibers from dryspinning of acetylated softwood kraft lignin. Carbon. 2013. V. 69. P. 626–629. DOI: 10.1016/j.carbon.2013.12.015.
Chatterjee S., Clingenpeel A., McKenna A., Rios O., Johs A. Synthesis and characterization of lignin-based carbon materials with tunable microstructure. RSC Adv. 2014. V. 4. P. 4743–4753. DOI: 10.1039/C3RA46928J.
Uraki Y, Nakatani A., Kubo S., Sano Y. Preparation of activated carbon fibers with large specific surface area from softwood acetic acid lignin. Wood Sci. 2001. V. 47. P. 465–469. DOI: 10.1007/BF00767899.
Greiner A., Wendorff J.H. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem., Int. Ed. 2007. V. 46. P. 5670–5703. DOI: 10.1002/anie.200604646.
Lallave M., Bedia J., Ruiz-Rosas R., Rodriguez-Mirasol J., Cordero T., Otero J.C., Marquez M., Barrero A., Loscertales I.G. Filled and hollow carbon nano-fibers by coaxial electrospinning of Alcell lignin without binder polymers. Adv. Mater. 2007. V. 19. P. 4292–4296. DOI: 10.1002/adma.200700963.
Kumar M., Hietala M., Oksman K. Lignin-based electrospun carbon nanofibers. Front. Mater. 2019. V. 6. P. 1-6. DOI: 10.3389/fmats.2019.00062.
Baker D.A., Rials T.G. Recent advances in low‐cost carbon fiber manufacture from lignin. J. Appl. Polym. Sci. 2013. V. 130. P. 713–728. DOI: 10.1002/APP.3927.
Braun J.L., Holtman K.M., Kadla J.F. Lignin-based carbon fibers: Oxidative thermostabilization of kraft lig-nin. Carbon. 2005. V. 43. P. 385–394. DOI: 10.1016/j.carbon.2004.09.027.
Li Y., Cui D., Tong Y., Xu L. Study on structure and thermal stability properties of lignin during thermostabili-zation and carbonization. Int. J. Biol. Macromol. 2013. V. 62. P. 663–669. DOI: 10.1016/j.ijbiomac.2013.09.040.
Brodin I., Ernstsson M., Gellerstedt G., Sjoholm E. Oxidative stabilisation of kraft lignin for carbon fibre production. Holzforschung. 2012. V. 66. P. 141–147. DOI: 10.1515/HF.2011.133.
Norberg I., Nordstrom Y., Drougge R., Gellerstedt G., Sjoholm E. A new method for stabilizing softwood kraft lignin fibers for carbon fiber production. J. Appl. Polym. Sci. 2013. V. 128. P. 3824–3830. DOI: 10.1002/app.38588.
Foston M., Nunnery G.A., Meng X.Z., Q.N., Baker F.S., Ragauskas A. NMR a critical tool to study the pro-duction of carbon fiber from lignin. Carbon. 2013. V. 52. P. 65–73. DOI: 10.1016/j.carbon.2012.09.006.
Dallmeyer I., Lin L.T., Li Y.J., Ko F., Kadla J.F. Preparation and characterization of interconnected, kraft lignin‐based carbon fibrous materials by electrospinning. Macromol. Mater. Eng. 2014. V. 299. P. 540–551. DOI: 10.1002/mame.201300148.
Poursorkhabi V., Mohanty A.K., Misra M. Statistical analysis of the effects of carbonization parameters on the structure of carbonized electrospun organosolv lignin fibers. J. Appl. Polym. Sci. 2016. V. 133. P. 44005. DOI: 10.1002/app.44005.
Griffith W.L., Compere A.L., Leitten Jr. C.F., Shaffer J.T. Low-cost, lignin-based carbon fiber for transportation applications. 35th ISTC Conference. Dayton. OH. Sep. 28-Oct. 2. 2003. P. 1-8.
Zhang M., Ogale A.J. Effect of temperature and concentration of acetylated‐lignin solutions on dry‐spinning of carbon fiber precursors. Appl. Polym. Sci. 2016. V. 133. P. 43663. DOI: 10.1002/app.43663.
Evstigneev E.I. Electrochemical reactions of lignin. Khim. Rastit. Syr’ya. 2014. V. 3. P. 5-42 (in Russian). DOI: 10.14258/jcprm.1403005.
Sazanov V., Kosyakov D., Krutov S., Kostereva T., Kulikova Y., Shkaeva N., Ladesov A., Ipatova Y., Pokryshkin S., Fedorova G. Pyrolysis of polyacrylonitrile/technical hydrolytic lignin composites. Evraz. Khim.-Tekhnol. Zhurn. 2015. V. 17. P. 287–294. DOI: 10.18321/ectj272.
Dumanlı A.G., Windle A.H. Carbon fibres from cellulosic precursors: a review. J. Mater Sci. 2012. V. 47. P. 4236–4250. DOI: 10.1007/s10853-011-6081-8.
Wang X., Jiang M., Zhou Z., Gou J., Hui D. 3D printing of polymer matrix composites: A review and prospective. Composites Part B. 2017. V. 110. P. 442–458. DOI: 10.1016/j.compositesb.2016.11.034.
Water J. J., Bohr A., Boetker J., Aho J., Sandler N., Nielsen H. M., Rantanen J. Three-Dimensional Printing of Drug-Eluting Implants: Preparation of an Antimicrobial Polylactide Feedstock Material. J. Pharm. Sci. 2015. V. 104. P. 1099-1107. DOI: 10.1002/jps.24305.
Holländer J., Genina N., Jukarainen H., Khajeheian M., Rosling A., Mäkilä E., Sandler N. Three-dimensional printed PCL based implantable prototypes of medical devices for controlled drug delivery. J. Pharm. Sci. 2016. V. 105. P. 2665-2676. DOI: 10.1016/j.xphs.2015.12.012.
Genina N., Holländer J., Jukarainen H., Mäkilä E., Salonen J., Sandler N. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. Eur. J. Pharm. Sci. 2016. V. 90. P. 53-63. DOI: 10.1016/j.ejps.2015.11.005.
Bhattacharjee N., Urrios A., Kang S., Folch A. The upcoming 3D-printing revolution in microfluidics. Lab. Chip. 2016. V. 16. P. 1720-1742. DOI: 10.1039/C6LC00163G.
Xu W., Wang X., Sandler N., Willför S., Xu C. Three-dimensional printing of wood-derived biopolymers: a re-view focused on biomedical applications. ACS Sust. Chem. Eng. 2018. V. 6. P. 5663−5680. DOI: 10.1021/acssuschemeng.7b03924.
Tanase-Opedal M., Espinosa E., Rodríguez A., Chinga-Carrasco G. Lignin: a biopolymer from forestry biomass for biocomposites and 3D printing. Materials. 2019. V 12. P. 3006. DOI: 10.3390/ma12183006.
Gkartzou E., Koumoulos E.P., Charitidis C.A. Production and 3D printing processing of bio-based thermo-plastic filament. Manufact. Rev. 2017. V. 4. P. 1-14. DOI: 10.1051/mfreview/2016020.
Domínguez-Robles J., Martin N.K., Fong M.L., Stewart S.A., Irwin N.J., Rial-Hermida M.I., Donnelly R.F., Larrañeta E. Antioxidant PLA composites containing lignin for 3D printing applications: a potential material for healthcare applications. Pharmaceutics. 2019. V. 11. P. 165 (1-14). DOI:10.3390/pharmaceutics11040165.
Mimini V., Sykacek E. Syed Hashim S.N.A., Holzweber J., Het-tegger H., Fackler K., Potthast A., Mundigler N., Rosenau T. Compatibility of kraft lignin, organosolv lignin and lignosulfonate with PLA in 3D printing. J. Wood Chem. Technol. 2019. V. 39. P. 14−30. DOI: 10.1080/02773813.2018.1488875.
Nguyen N.A., Barnes S.H., Bowland C.C., Meek K.M., Littrell K.C., Keum J.K., Naskar A.K. A path for lignin valorization via additive manufacturing of high-performance sustainable composites with enhanced 3D printability. Sci. Adv. 2018. V. 4. P. 1-15. DOI: 10.1126/sciadv.aat4967.
Feng X., Yang Z., Chmely S., Wang Q., Wang S., Xie Y. Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: Mechanical reinforcement and thermal stabilization. Carbohydr. Polym. 2017. V. 169. P. 272−281. DOI: 10.1016/j.carbpol.2017.04.001.
Sutton J.T., Rajan K., Harper D.P., Chmely S.C. Lignin-containing photoactive resins for 3D printing by ste-reolithography. ACS. Appl. Mater. Interfaces. 2018. V. 10. P. 36456−36463. DOI: 10.1021/acsami.8b13031.
Zhang S., Li M., Hao N., Ragauskas A.J. Stereolithography 3D printing of lignin-reinforced composites with enhanced mechanical properties. ACS Omega. 2019. V. 4. P. 20197−20204. DOI: 10.1021/acsomega.9b02455.
Yu D.-G., Branford-White C., Ma Z.-H., Zhu L.-M., Li X.-Y., Yang X.-L. Novel drug delivery devices for providing linear release profiles fabricated by 3DP. Int. J. Pharm. 2009. V. 370. P. 160-166. DOI: 10.1016/j.ijpharm.2008.12.008.
Lewis J.A. Direct ink writing of 3D functional materials. Adv. Funct. Mater. 2006. V. 16. P. 2193-2204. DOI: 10.1002/adfm.200600434.
Markstedt K., Mantas A., Tournier I., Martínez Ávila H.С., Hägg, D., Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose−alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 2015. V. 16. P. 1489-1496. DOI: 10.1021/acs.biomac.5b00188.
Thakur S., Govender P.P., Mamo M.A., Tamulevicius S., Mishra Y.K., Thakur V.K. Progress in lignin hydro-gels and nanocomposites for water purification: Future perspectives. Vacuum. 2017. V. 146. P. 342-355. DOI: 10.1016/j.vacuum.2017.08.011.
Rico-García D., Ruiz-Rubio L, Pérez-Alvarez L., Hernández-Olmos S.L., Guerrero-Ramírez G.L., Vilas-Vilela J.L. Lignin-Based Hydrogels: Synthesis and Applications. Polymers. 2020. V. 12. P. 81-104. DOI: 10.3390/polym12010081.
Khan S., Ullah A., Ullah K., Rehman N. Insight into hydrogels. Designed Monomers Polymers. 2016. V. 19. P. 456–478. DOI: 10.1080/15685551.2016.1169380.
Larrañeta E., Imízcoz M., Toh J.X., Irwin N.J., Ripolin A., Perminova A., Domínguez-Robles J., Rodríguez A., Donnelly R.F. Synthesis and characterization of lignin hydrogels for potential applications as drug eluting anti-microbial coatings for medical materials. ACS Sust. Chem. Eng. 2018. V. 6. P. 9037−9046. DOI: 10.1021/acssuschemeng.8b01371.
Musilová L, Mráček A, Kovalcik A, Smolka P, Minařík A, Humpolíček P, Vícha R, Ponížil P. Hyaluronan hy-dro-gels modified by glycinated kraft lignin: morphology, swelling, viscoelastic properties and biocompatibility. Carbohydr. Polym. 2018. V. 181. P. 394-403. DOI: 10.1016/j.carbpol.2017.10.048.
Ravishankar K., Venkatesan M., Preeth Desingh R., Mahalingam A., Sadhasivam B., Subramaniyam R., Dhamodharan R. Biocompatible hydrogels of chitosan-alkali lignin for potential wound healing applications. Ma-ter. Sci. Eng, C. 2019. V. 102. P. 447-457. DOI: 10.1016/j.msec.2019.04.038.
Li F., Wang X., Yuan T., Sun R. A lignosulfonate-modified graphene hydrogel with ultrahigh adsorption ca-pacity for Pb(II) removal. J. Mater. Chem. 2016. V. A 4. P. 11888-11896. DOI: 10.1039/C6TA03779H.
Sun Y., Ma Y., Fang G., Li S., Fu Y. Synthesis of acid hydrolysis ligning-poly-(acrylic acid) hydrogel super-absorbent composites and adsorption of lead ions. BioRe-sources. 2016. V. 11. P. 5731-5742.
Wang Y., Xiong Y., Sun F.-L., Yang Y.-Q., Zhang X.-D. Ultrasonic-assisted synthesis of a superabsorbent composite hydrogel for the responsive and removal properties of Pb (II). Acta Phys. Chim. Sin. 2016. V. 32. P. 2563-2573. DOI: 10.3866/PKU.WHXB201607122.
Jiang P., Sheng X., Yu S., Li H., Lu J., Zhou J., Wang H. Preparation and characterization of thermo-sensitive gel with phenolated alkali lignin. Sci. Reports. 2018. V. 8. P. 14450-14460. DOI: 10.1038/s41598-018-32672-z.
Yao Q., Xie J., Liu J., Kang H., Liu Y. Adsorption of lead ions using a modified lignin hydrogel. J. Polym. Res. 2014. V. 21. P. 465-481. DOI: 10.1007/s10965-014-0465-9.
Ji X., Zhang Z., Chen J., Yang G., Chen H., Lucia L.A. Synthesis and characterization of alkali lignin-based hy-drogels from ionic liquids. BioResources. 2017. V. 12. P. 5395-5406.
Evstigneyev E.I, Grinenko E.V., Mazur A.S., Vasilyev A.V. Study of the formation of lignin hydrogels with metal cations. J. Wood Chem. Technol. 2021. V. 41. N 2-3. P. 73-82. DOI: 10.1080/02773813.2021.1873389.
Levanova V.P. Therapeutic lignin. SPb.: Tsentr sorbtsionnykh tekhnologiy. 1992. 136 p. (in Russian).
Rabinovich M.L. Wood hydrolysis industry in the Soviet Union and Russia: A mini-review. Tsellyuloz. Khim. Tekhnol. 2010. V. 44. P. 173–186 (in Russian).
Martínez. V, Mitjans M., Vinardell M.P. Pharmacological applications of lignins and lignins related compounds: an overview. Curr. Org. Chem. 2012. V. 16. P. 1863-1870. DOI: 10.2174/138527212802651223.
Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am. J. Med. 1991. V. 91. P. 14S-22S. DOI: 10.1016/0002-9343(91)90279-7.
Buxton G.V., Greenstock C.L., Helman W.P., Ross A.B. Critical review of rate constants for reaction of hy-drated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution. J. Phys. Chem. Ref. Data. 1988. V. 17. P. 513-886. DOI: 10.1063/1.555805.
Zhang Y., But P.P., Ooi V.E., Xu H.X., Delaney G.D., Lee S.H., Lee S.F. Chemical properties, mode of action, and in vivo antiherpes activities of a lignin-carbohydrate complex from Prunella vulgaris. Antiviral Res. 2007. V. 75. P. 242-249. DOI: 10.1016/j.antiviral.2007.03.010.
Sakagami H., Kawano M., Thet M.M., Hashimoto K., Satoh K., Kanamoto T., Terakubo S., Nakashima H., Haishima Y., Maeda Y., Sakurai K. Anti-HIV and immunomodulation activities of cacao mass lignincarbohydrate. Biosci. Biotechnol. Biochem. 2011. V. 25. P. 229-236.
Lee J.B., Chihiro Y., Hayashi K., Hayashi T. Antiviral and immunostimulating effects of lignin-carbohydrate-protein complexes from Pimpinella anisum. Biosci. Bio-technol. Biochem. 2011. V. 75. P. 459-465. DOI: 10.1271/bbb.100645.
Sakagami H., Hashimoto K., Suzuki F., Ogiwara T., Satoh K., Ito H., Hatano T., Takashi Y., Fujisawa S. Molecular requirements of lignincarbohydrate complexes for expression of unique biological activities. Phytochemistry. 2005. V. 66. P. 2108-2120. DOI: 10.1016/j.phytochem.2005.05.013.
Fedorov E.I., Orlov A. A., Zherebker A., Gubareva E.A., Maydin M.A., Konstantinov A.I., Krasnov K.A., Karapetian R.N., Izotova E.I., Pigarev S.E., Panchenko A.V., Tyndyk M.T., Osolodkin D.I., Nikolaev E.N., Perminova I.V., Anisimov V.N. Novel water-soluble lignin derivative BP-Cx-1: identification of components and screening of potential targets in silico and in vitro. Onco-target. 2018. V. 9. P. 18578-18593. DOI: 10.18632/oncotarget.24990.
Kai D., Ren W., Tian L., Chee P.L., Liu Y., Ramakrishna S., Loh X.J. Engineering poly (lactide) – lignin nanofibers with antioxidant activity for biomedical application. ACS Sust. Chem. Eng. 2016. V. 4. P. 5268–5276. DOI: 10.1021/acssuschemeng.6b00478.
Caicedo H. M., Dempere L.A., Vermerris W. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires. Nanotechnology. 2012. V. 23. P. 105605 (1-12). DOI: 10.1088/0957-4484/23/10/105605.
Ten E., Ling C., Wang Y., Srivastava A., Dempere. L. A., Vermerris W. Lignin nanotubes as vehicles for gene delivery into human cells. Biomacromolecules. 2014. V. 15. P. 327-338. DOI: 10.1021/bm401555p.
Chudakov M.I. Industrial use of lignin. M.: Lesnaya promst’. 1983. 200 p. (in Russian).
Kleinert M., Barth T. Towards a lignincellulosic biore-finery: direct one-step conversion of lignin to hydrogen-enriched biofuel. Energy Fuels. 2008. V. 22. P. 1371–1379. DOI: 10.1021/ef700631w.
Gellerstedt G., Li J., Eide I., Kleinert M., Barth T. Chemical structures present in biofuel obtained from lig-nin. Energy Fuels. 2008. V. 22. P. 4240–4244. DOI: 10.1021/ef800402f.
Mahmood N., Yuan Z., Schmidt J., Matthew M., Xu C. Hydrolytic liquefaction of hydrolysis lignin for the repa-ration of bio-based rigid polyurethane foam. Green Chem. 2016. V. 18. P. 2385-2398. DOI: 10.1039/c5gc02876k.
Davis K.M., Rover M., Brown R.C., Bai X., Wen Z., Jarboe L.R. Recovery and utilization of lignin monomers as part of the biorefinery approach. Energies. 2016. V. 9. P. 808-836. DOI: 10.3390/en9100808.
Evstigneev E.I. Problems of valorization of lignin. Khim. Rastit. Syr’ya. 2021. P. 87-90.
Evstigneyev E.I. Oxidation of hydrolysis lignin with hydrogen peroxide in acid solutions. Priklad. Khim. 2013. V. 86. P. 258–265 (in Russian). DOI: 10.1134/S1070427213020201.
Evstigneev E.I., Yuzikhin O.S., Gurinov A.A., Ivanov A.Yu., T. Artamonova T.O., Khodorkovskii M.A., Bessonova E.A., Vasiliev A.V. Chemical structure and physicochemical properties of oxidized hydrolysis lignin. Pri-klad. Khim. 2015. V. 88. P. 1295−1303 (in Russian). DOI: 10.1134/S107042721508011X.
Zaitseva O., Louis B., Beneteau V., Pale P., Shanmugam S., Evstigneyev E.I., Vasiliev A.V. Postmodified FAU zeolites as efficient catalysts for the synthesis of coumarins. Kataliz Segodnya. 2021. V. 367. P. 111–116 (in Russian). DOI: 10.1016/j.cattod.2020.06.081.
Bajwaa D.S., Pourhashemb G., Ullahb A.H, Bajwac S.G. A concise review of current lignin production, applications, products and their environmental impact. Industrial Crops Products. 2019. V. 139. P. 111526 (1-12). DOI: 10.1016/j.indcrop.2019.111526.
Cotton: advantages. disadvantages and varieties. VPLATE. URL[https://vplate.ru/tkani/vidy/hlopok/]
Cotton fabrics: types of fabrics, composition, advantages and disadvantages. Textile Life. URL[https://textile.life/fabrics/natural-fibers/tkani-iz-hlopka-vidy-tkanej-sostav-dostoinstva-i-nedostatki.html].
Linen factory of Tamesa (Khamovnaya Sloboda). Wiki2. URL[https://wiki2.org/ru/Polotnyana_factory_Tamesa_ (Hamovnya_sloboda)].
Characteristics of cotton. Textile Space. URL[https://textilespace.ru/directory/fibers/harakteristika_hlopkaTextilespace.ru].
Textile fibers. VisaArt. URL[https://visa-art.ru/article/Textile-fibers/].
History of the textile industry of the Ivanovo region. Ex-cellent Ivanovo textiles. URL[http://hb-tex.ru/history].
Coconut fiber. Textile Space. URL[https://textilespace.ru/directory/fibers/kokosovoe_volokno].
What is useful to know about coconut fiber. Vinyl Tex. URL[https://oblavka.ru/blog/chto-polezno-znat-pro-kokosovoe-volokno.html].
Woolen fabric: varieties, how to care for. TexstileTrend. URL [https://textiletrend.ru/pro-tkani/naturalnyie/sherstyanaya-tkan.html].
Wool. Texstile Space. URL [https://textilespace.ru/directory/fabrics/sherst].
Silk. Wikipedia. URL[https://ru.wikipedia.org/wiki/Silk]
Natural silk-chic and convenience in one material. TexstileTrend. URL [https://textiletrend.ru/pro-tkani/naturalnyie/shelk.html].
Silk-features and characteristics of the material. Tkac.ru. URL[https://tkac.ru/tkani/dlya-odezhdy/shelk.html].
History of silk production in Russia. Fair of Masters. URL[https://www.livemaster.by/topic/3391070-article-istoriya-proizvodstva-shelka-vrossii].
Asbestos fiber. The art of sewing. URL[http://t-stile.info/asbestovoe-volokno/].
Asbestos fabric, how it is produced and used. TexstileTrend. URL[https://textiletrend.ru/pro-tkani/raznyiy-sostav/asbestovaya-tkan.html].
Asbestos. Wikipedia. URL[https://ru.wikipedia.org/wiki/Асбест].
Basalt fabric: description, characteristics, production technology, application. FB. URL[https://fb.ru/article/433325/bazaltovaya-tkan-opisanie-harakteristiki-tehnologiya-proizvodstva-primenenie].
Barker J.W., Gomez R.K. Formation of Hydrates during Deepwater Drilling Operations. J. Pet. Technol. 1989. V. 41. N 3. P. 297–301. DOI: 10.2118/16130-PA.
Mu L., von Solms N. Inhibition of natural gas hydrate in the system containing salts and crude oil. J. Pet. Sci. Eng. 2020. V. 188. N 106940. DOI: 10.1016/j.petrol.2020.106940.
Birchwood R., Dai J., Shelander D., Boswell R. Developments in Gas Hydrates. Oilfield Rev. 2010. V. 22. N 1. P. 18-33.
Lal B., Nashed O. Chemical Additives for Gas Hydrates. Green Energy and Technology. Springer. 2020. 86 p. DOI: 10.1007/978-3-030-30750-9.
Kelland M.A. Production Chemicals for the Oil and Gas Industry. CRC Press. 2016. 400 р. DOI: 10.1201/9781420092974.
Carroll J. Natural Gas Hydrates. A guide for engineers. US: Gulf Professional Publ. 2014. 340 p.
Manakov A.Yu., Stoporev A.S. Physical chemistry and technological applications of gas hydrates: topical as-pects. Russ. Chem. Rev. 2021. V. 90. N 5. P. 566–600. DOI: 10.1070/RCR4986.
Sloan E D., Koh C.A. Clathrate hydrates of natural gases. London, New York: CRC Press. Boca Rator. 2008. 731 р.
Kelland M.A. History of the Development of Low Dos-age Hydrate Inhibitors. Energy Fuels. 2006. V. 20. N 3. P. 825–847. DOI: 10.1021/ef050427x.
Kelland M.A. Designing Kinetic Hydrate Inhibitors—Eight Projects With Only Partial Success, But Some Les-sons Learnt. Energy Fuels. 2017. V. 31. N 5. P. 5046-5054. DOI: 10.1021/acs.energyfuels.7b00710.
Ke W., Chen D. A short review on natural gas hydrate, kinetic hydrate inhibitors and inhibitor synergists. Chin. J. Chem. Eng. 2019. V. 27. N 9. P. 2049-2061. DOI: 10.1016/j.cjche.2018.10.010.
Carpenter C. Benefits of Low-Dosage Hydrate Inhibitors. J. Pet. Technol. 2019. V. 71. N 9. P. 94–95. DOI: 10.2118/0919-0094-JPT.
Perrin A., Musa O. M., Steed J. W. The chemistry of low dosage clathrate hydrate inhibitors. Chem. Soc. Rev. 2013. V. 42. N 5. P. 1996-2015. DOI: 10.1039/C2CS35340G.
Shakhmaev R.N., Sunagatullina A.Sh., Zorin V.V. Bio-degraded kinetic inhibitors of hydrate formation. Nefte-gaz. Delo. 2016. V. 15. N 2. P. 147-153 (in Russian).
Kelland M.A. A Review of Kinetic Hydrate Inhibitors from an Environmental Perspective. Energy Fuels. 2018. V. 32. N 12. P. 12001–12012. DOI: 10.1021/acs.energyfuels.8b03363.
Yaqub S., Murtaza M., Lal B. Towards a fundamental understanding of biopolymers and their role in gas hy-drates: A review. J. Natural Gas Sci. Eng. 2021. V. 91. N 103892. DOI: 10.1016/j.jngse.2021.103892.
Gupta P., Sangwai J.S. Formation and Dissociation Kinetics of Methane Hydrate in Aqueous Oilfield Polymer Solutions (Polyacrylamide, Xanthan Gum, and Guar Gum) and Their Performance Evaluation as Low-Dosage Kinetic Hydrate Inhibitors (LDHI). Energy Fuels. 2019. V. 33. N 7. P. 6335–6349. DOI: 10.1021/acs.energyfuels.9b01204.
Wan L., Zhang N., Liang D.Q. Inhibition effects of polysaccharides for gas hydrate formation in methane–water system. J. Mol. Liq. 2019. V. 292. N 111435. DOI: 10.1016/j.molliq.2019.111435.
Fakhreeva A.V., Voloshin A.I., Musin F.F., Telin A.G., Dokichev V.A. Carboxymethylcellulose sodium salt – ef-fective “green” regent for management of calcium carbonate crystallization and natural gas hydrate formation. IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 525. N 012050. DOI: 10.1088/1757-899X/525/1/012050.
Farhadian A., Varfolomeev M.A., Shaabani A., Nasiri S., Vakhitov I., Zaripova Y.F., Yarkovoi V.V., Sukhov A.V. Sulfonated chitosan as green and high cloud point kinetic methane hydrate and corrosion inhibitor: Experi-mental and theoretical studies. Carbohydr. Polym. 2020. V. 236. N 116035. DOI: 10.1016/j.carbpol.2020.116035.
Ishmuratov F.G., Rakhimova N.T., Ishmiyarov E.R., Voloshin A.I., Gusakov V.N., Tomilov Yu.V., Nifantyev N.E., Dokichev V.A. New "green" polysaccharidal inhibitor of gas hydrate formation on the basis of carbox-ymethylcellulose sodium salt. Russ. J. Appl. Chem. 2018. V. 91. N 4. P. 653−656. DOI: 10.1134/S1070427218040183.
Fu W., Wang Z., Chen L., Sun B. Experimental Investigation of Methane Hydrate Formation in the Carboxme-thylcellulose (CMC) Aqueous Solution. SPE J. 2020. V. 25. N 03. P. 1042–1056. SPE-199367-PA. DOI: 10.2118/199367-PA.
Fakhreeva A.V., Voloshin A.I., Tomilov Yu.V., Dokichev V.A. Production of Ethanolamine Salts and Amides of carboxymethyl cellulose – perspective oilfield reagents for oil production. IOP Conf. Ser.: (EES). 2020. V. 459. N 052050. DOI: 10.1088/1755-1315/459/5/052050.
Haghighi H., Chapoy A., Burgess R., Mazloum S., Tohidi B. Phase equilibria for petroleum reservoir fluids containing water and aqueous methanol solutions: meas-urements and modelling using the CPA equation of state. Fluid Phase Equilib. 2009. V. 278. N 1-2. P. 109–116. DOI: 10.1016/j.fluid.2009.01.009.
Altamash T., Qureshi M. F., Aparicio S., Aminnaji M., Tohidi B., Atilah M. Gas hydrates inhibition via com-bined biomolecules and synergistic materials at wide process conditions. J. Natural Gas Sci. Eng. 2017. V. 46. P. 873-883. DOI: 0.1016/j.jngse.2017.07.034.
Saikia T., Mahto V. Temperature Augmented Visual Method for Initial Screening of Hydrate Inhibitors. Oil & Gas Sci. and Technol. - Rev. IFP Energies nouvelles. 2018. V. 73. P. 1-8. DOI: 10.2516/ogst/2017040.
Lee J.Y., Yun T.S., Santamarina J., Ruppel C. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments. Geo-chem. Geophys. Geosyst. 2007. V. 8. N 6. DOI: 10.1029/2006GC001531.
Antonova G.F., Usov A.I. Structure of arabinogalactan from siberian larch (Larix sibirica Ledeb) wood. Bioor-ganich. Khimiya. 1984. V. 10. N 12. P. 1664-1669.
Cohen J.M., Wolf P.F., Young W.D. Enhanced Hydrate Inhibitors: Powerful Synergism with Glycol Ethers. Ener-gy Fuels. 1998. V. 12. N 2. P. 216-218. DOI: 10.1021/ef970166u.
Farhadian A., Varfolomeev M.A., Rahimi A., Mendgaziev R.I., Semenov A.P., Stoporev A.S., Vinogradova S.S., Karwt R., Kel-land M.A. Gas Hydrate and Corrosion Inhibition Performance of the Newly Synthesized Polyurethanes: Potential Dual Function Inhibitors. Energy Fuels. 2021. V. 35. N 7. P. 6113–6124. DOI: 10.1021/acs.energyfuels.1c00101.
Chetvertneva I.A., Karimov O.Kh., Teptereva G.A., Babaev E.R., Tivas N.S., Movsumzade E.M. The use of a pentosan-containing fraction of neutral lignosulfonates for the production of furan derivatives. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 2. P. 73-80 (in Russian). DOI: 10.6060/ivkkt.20216402.6300
Teptereva G.A., Chetvertneva I.A., Karimov O.Kh., Chuiko E.V., Movsumzade E.M. Substantiation of the efficiency of biopolymer systems by mathematical calculation of adsorption characteristics. NefteGazoKhimiya. 2020. N 3-4. P. 44-54 (in Russian).
Karimov O.Kh., Kolchina G.Yu., Teptereva G.A., Chetvertneva I.A., Karimov E.Kh. Structure and reactivity of plant antioxidants based on oxycoric acids. NefteGazoKhimiya. 2020. N 2. P. 22-26 (in Russian).
Movsumzade E.M., Chetvertneva I.A., Teptereva G.A., Rolnik L.Z., Kolchina G.Yu., Tivas N.S., Karimov O.H., Bakhtina A.Yu. The main components of the re-distribution of natural plant resources (origin, formation and development of practical properties). Promyshl. Pr-vo Ispolz. Elastomerov. 2020. N 3-4. P. 60-70. (in Russian).
Chetvertneva N.A., Karimov O.Kh., Teptereva G.A., Akchurin Kh.I. Practical aspects of the use of drilling re-agents based on natural polymers in the fields of Bashkortostan. Transport Khranenie Nefteproduktov Uglevo-dorodnogo Syr’ya. 2020. N 1. P. 42-47 (in Russian).
Jem K.J., van der Pol J.F., de Vos S. Microbial Lactic Acid, Its Polymer Poly(lactic acid), and Their Industrial Applications. Plastics from Bacteria: Natural Functions and Applications. Ed. by G.G.-Q. Chen. Berlin, Heidelberg: Springer Berlin Heidelberg. 2010. P. 323-346. DOI: 10.1007/978-3-642-03287-5_13.
Jem K.J., Tan B. The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv. Ind. Eng. Polym. Res. 2020. V. 3. № 2. P. 60-70. DOI: 10.1016/j.aiepr.2020.01.002.
Ghaffar T. Irshad M., Anwar Z., Aqil T., Zulifqar Z., Tarig A., Kamran M., Ehsan N., Mehmood S. Recent trends in lactic acid biotechnology: A brief review on production to purification. J. Radiat. Res. Appl. Sci. 2014. V. 7. N 2. P. 222-229. DOI: 10.1016/j.jrras.2014.03.002.
Garlotta D. A literature review of poly (lactic acid). J. Polym. Environ. 2011. V. 9. N 2. P. 63-84.
Mehta R., Kumar V., Bhunia H., Upadhyay S.N. Synthesis of poly(lactic acid): A Review. J. Macromol.Sci. Part C. Polym. Rev. 2005. V. 45. N 4. P. 325-349. DOI: 10.1080/15321790500304148.
Drumright R.E., Gruber P.R., Henton D.E. Polylactic acid technology. Adv. Mater. 2000. V. 12. N 23. P. 1841–1846. DOI: 10.1002/1521-4095(200012)12:23<1841:AID-ADMA1841> 3.0.CO;2-E.
Nampoothiri K.M., Nair N.R., John R.P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010. V. 101. P. 8493-8501. DOI: 10.1016/j.biortech.2010.05.092.
Lim L.-T., Auras R., Rubino M. Processing technologies for poly(lactic acid). Prog. Polym. Sci. Pergamon. 2008. V. 33. N 8. P. 820-852. DOI: 10.1016/j.progpolymsci.2008.05.004.
Spinu M., Jackson C., Keating M.Y., Gardner K.H. Material design in poly(lactic acid) systems: block copol-ymers, star homo- and copolymers, and stereocomplexes. J. Macromol. Sci. Part A. 1996. V. 33. N 10. P. 1497-1530. DOI: 10.1080/10601329608014922.
Auras R., Harte B., Selke S. Sorption of ethyl acetate and d-limonene in poly(lactide) polymers. J. Sci. Food Agric. 2006. V. 86. N 4. P. 648-656. DOI: DOI: 10.1002/jsfa.2391.
Dorgan J.R., Lehermeier H., Mang M. Thermal and rheological properties of commercialgrade poly(lactic ac-ids)s. J. Polym. Environ. 2000. V. 8. N 1. P. 1-9. DOI: 10.1023/A:1010185910301.
Leja K., Lewandowicz G. Polymer biodegradation and bijdegradable polymers – A review. Polish J. Envirjn. Stud. 2019. V. 19. N 2. P. 255-266.
Torchilin V.P. Multifunctional nanocarriers. Adv. Drug. Deliv. Rev. 2006. V. 58. N 14. P. 1632-1555. DOI: 10.1016/j.addr.2006.09.009.
Swider E., Koshkina O., Tel J., Cruz L., Vries I., Srini-vas M. Customizing poly(lacticco-glycolic acid) particles for biomedical applications. Acta Biomater. 2018. V. 73. P. 38-51. DOI: DOI: 10.1016/j.actbio.2018.04.006.
Rahmani M., Khani M., Rabbani S., Alireza Mashaghi A., Noorizadeh F., Faridi-Majidi R., Ghanbari H. De-velopment of poly (mannitol sebacate)/poly (lactic acid) nanofibrous scaffolds with potential applications in tissue engineering. Mater Sci. Eng. C. 2020. V. 110. P. 110626-110632. DOI: 10.1016/j.msec.2020.110626.
Rogina A., Pribolšan L., Hanžek A., Gόmez-Estrada L., Ferrer G.G., Marijanović I., Ivanković M., Ivanković H. Macroporous poly(lactic acid) construct supporting the osteonductive porous chitosandased hy-drogel for bone tissue engineering. Polymer. 2016. V. 98. P. 172-181. DOI: 10.1016/j.polymer.2016.06.030.
Tajbakhsh S., Hajiali F. A comprensive study on the fabrication and properties of biocmposites of poly(lactic acid)/ceramics for bone tissue engineering. Mater. Sci. Eng. C. 2017. V. 70. P. 897-912. DOI: 10.1016/j.msec.2016.09.008.
Radusin T., Tomsik A., Saric I., Ristic I., Giaciniti Baschetti M., Minelli M., Novakovic A. Hybrid PLA/wild garlic antimicrobial composite films for food packaging application. Polym. Compos. 2019. V. 40. P. 893-900. DOI: 10.1002/pc.24755.
Xiong Z., Li C., Ma S., Feng J., Yang Y., Zhang R., Shu J. The properties of poly(lactic acid)/starch blends with a functionalized plant oil: Tung oil anhydride. Carbohydr. Polym. 2013. V. 95. P. 77-84. DOI: 10.1016/j.carbpol.2013.02.054.
Prusek D., Boruvka M., Lenfeld P. Natural aerobibdeg-radation of polylacticacid (Composites) with natural fiber additives. Mater. Sci. Forum. 2018. V. 919. P. 167-174. DOI: 10.4028/www.scientific.net/MSF.919.167.
Musio M., Janeczek H., Jurczyk S., Kwicien I., Sobota M., Marcinkowski A., Rudz J. (Bio)degradatiion studies of degradable polymer composites with jute in different environments. Fibers Polym. 2015. V. 16. P. 1362-1369. DOI: 10.1007/s12221-015-1362-5.
Karamanlioglu M., Robson G.D. The Influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym. Degrad. Stab. 2013. V. 98. P. 2063-2071. DOI: 10.1016/j.polymdegradstab.2013.07.004.
Gu J.-D. Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int. Biodeterior. Biodegrad. 2003. V. 52. N 2. P. 69-91. DOI: 10.1016/S0964-8305(02)00177-4.
Torres A., Li S.M., Roussos S., Vert M. Microbial Degradation of a Poly(lactic acid) as a Model of Synthetic Polymer Degradation Mechanisms in Outdoor Conditions. ACS Symp. Ser. 2009. Р. 218-226. DOI: 10.1021/bk-1999-0723.ch014.
Rudnik E., Briassoulis D. Degradation behavior of poly(lactic acid) films and fibres in soil under Mediterra-nean field conditions and laboratory simulations testing. Ind. Crops. Prod. 2011. V. 33. P. 648-658. DOI: 10.1016/j.indcrop.2010.12.031.
Sinha Ray S., Yamada K., Okamoto M., Ueda K. Controlof biodegradability of polylactide via nanocomposites technology. Macromol. Mater. Eng. 2003. V. 288. P. 203-208. DOI: 10.1002/mame.200390013.
Sednickova M., Pekarova S., Kucharczyk P., Bockaj J., Janigova I., Kleinova A., Jochec-Moskova D., Omanikova L., Perd’ochova D., Koutny M., Sedlarik V., Alexy P., Chodak I. Changes of physica lproperties of PLA-based blends during early stage of biodegradationin compost. Int. J. Biol. Macromol. 2018. V. 113. P. 434-442. DOI: 10.1016/j.ijbiomac.2018.02.078.
Oliver-Ortega H., Julian F., Espinach F.X., Tarres Q., Ardanya M., Mutje P. Research on the use of lignocellu-losic fibres in forced bio-polyamide 11 with composites for automotive parts: Car door handle cases study. J. Clean Prod. 2019. V. 226. P. 64-73. DOI: 10.1016/j.jclepro.2019.04.047.
Rwawiire S. Tomkova B., Militky J., Jabbar A., Kale B.M. Development of a biocomposite based on green epoxy polymer and natural cellulise fabric (bark cloth) for automotive instruments panel applications. Compos. Part B. Eng. 2015. V. 81. P. 149-157. DOI: 10.1016/j.compositesb.2015.06.021.
Rogovina S.Z., Prut E.V., Berlin A.A. Composite Materials Based on Synthetic Polymers Reinforced with Natu-ral Fibers. Vysokomolek. Soed. Ser. A. 2019. V. 61. N 4. P. 417-438 (in Russian). DOI: 10.1134/S0965545X19040084.
Shahzad A. Effects of alkalization on tensile, impact, and fatigue properties of hemp fiber composites. J. Compos. Mater. 2012. V. 46. P. 973-986.
Takagi H., Kako S., Kusano K., Ousaka A. Thermal conductivity of PLA-bamboo fiber composites. Adv. Compos. Maters. 2007. V. 16. P. 377-384. DOI: 10.1163/156855107782325186.
Xiao Y., Zhou Q., Shan B. Design and construction of modern bamboo bridges. J. Bridge Eng. 2010. V. 15. P. 533-541. DOI: 10.1061/(ASCE)BE.1943-5592.0000089.
Ferri J.M., Fenollar O., Jorda-Vilaplana A., GaarcA-a-Sanoguera D., Balart R. Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/polycaprolactone blends. Polym. Int. 2016. V. 6. P. 453-463. DOI: 10.1002/pi.5079.
Khurma J., Rohindra D., Devi R. Miscibility study of solution cast blends of poly(lactic acid) and poly(vinyl butyral). J. Nat. Sci. 2005. V. 23. P. 22-25. DOI: 10.1071/SP05004.
Yokohara T., Yamaguchi M. Structure and properties for biomass-based polyester blends of PLA and PBS. Eur. Polym. J. 2008. V. 44. P. 677-685. DOI: 10.1016/j.eurpolymj.2008.01.008.
Li S., Woo E.M. Immiscibility-Miscibility Phase Transitions in Blends of Poly(L-lactide) with Poly(methyl methacrylate). Polym. Int. 2008. V. 57. P. 1242-1251. DOI: 10.1002/pi.2469.
Oksman K., Skrifars M., Selin J. Natural Fibres as Reinforcement in Polylactic Acid (PLA) Composites. Compos. Sci. Technol. 2003. V. 63. P. 1317-1324. DOI: 10.1016/S0266-3538(03)00103-9.
Mathew A.P., Oksman K., Sain M. The effect of morphology and chemical characteristics of cellulose rein-forcements on the crystallinity of polylactic acid. J. Appl. Polym. Sci. 2006. V. 101. P. 1317-1324. DOI: 10.1002/app.23346.
Wong S., Shanks R.A., Hodzic A. Poly(L‐lactic acid) composites with flax fibers modified by plasticizer ab-sorption. Polym. Eng. Sci. 2003. V. 43. P. 1566-1575. DOI: 10.1002/pen.10132.
Wong S., Shanks R.A., Hodzic A. Mechanical Behavior and Fracture Toughness of Poly(L‐lactic acid)‐Natural Fi-ber Composites Modified with Hyperbranched Polymers. Macromol. Mater. Eng. 2004. V. 289. P. 447-456. DOI: 10.1002/mame.200300366.
Bogren K.M., Gamstedt E.K., Neagu R.C., Åkerholm M., Lindström M. Dynamic–mechanical properties of wood–fiber reinforced polylactide: experimental characterization and micromechanical modeling. J. Thermoplast. Compos. Mater. 2006. V. 19. P. 613-637. DOI: 10.1177/0892705706067480.
Yu L., Petinakis S., Dean K., Bilyk A., Wu D. Green Polymeric Blends and Composites from Renewable Re-sources. Macromol. Symp. 2007. V. 249/250. P. 535-539. DOI: 10.1002/masy.200750432.
Oksman K., Mathew A.P., Bondeson D., Kvien I. Man-ufacturing Process of Cellulose Whiskers/Polylactic Acid Nanocomposites. Compos. Sci. Tecnol. 2006. V. 66. P. 2776-2784. DOI: 10.1016/j.compscitech.2006.03.002.
Bondenson D., Oksman K. Polylactic Ac-id/Cellulose Whisker Nanocomposites Modified by Polyvinyl Alcoho. Composites. 2007. V. 38. P. 2486-2492. DOI: 10.1016/j.compositesa.2007.08.001.
Petersson L., Kvien I., Oksman K. Structure and thermal properties of poly(lactic acid)/cellulose whiskers nano-composite materials. Compos. Sci. Tecnol. 2007. V. 67. P. 2535-2544. DOI: 10.1016/j.compscitech.2006.12.012.
Mathew A.P., Oksman K., Sain M. Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J. Appl. Polym. Sci. 2005. V. 97. N 5. P. 2014-2025. DOI: 10.1002/app.21779.
Ishihara T., Takahashi M., Higaki M., Mizushima Y., Mizushima T. Preparation and characterization of a na-noparticulate formulation composed of PEG-PLA and PLA as antiinflammatory agents. Int. J. Pharm. 2010. V. 385. P. 170-175. DOI: 10.1016/j.ijpharm.2009.10.025.
Kozlowski M., Masirek R., Piorkowska E., Gazicki-Lipman M. Biodegradable blends of poly(L‐lactide) and starch. J. Appl. Polym. Sci. 2007. V. 105. P. 269-277. DOI: 10.1002/app.26088.
Shogren R.L., Selling G., Willett J.L. Effect of Orientation on the Morphology and Mechanical Properties of PLA/Starch Composite Filaments. J. Polym. Environ. 2011. V. 19. P. 329-334. DOI: 10.1007/s10924-010-0267-z.
Zhang S., Feng X., Zhu S., Huan Q., Han K., Ma Y., Yu M. Novel toughening mechanism for polylactic acid (PLA)/starch blends with layer-like microstructure via pressure-induced flow (PIF) processing. Mater. Lett. 2013. V. 98. P. 238-241. DOI: 10.1016/j.matlet.2012.12.019.
Labus K., Trusek-Holownia A., Semba D., Ostrowska J., Tynski P., Bogusz J. Biodegradable polylactide and thermoplastic starch blends as drug release device – mass transfer study. Polish J. Chem. Technol. 2018. V. 20. P. 75-80. DOI: 10.2478/pjct-2018-0011.
Rogovina S.Z., Aleksanyan K.V., Kozyrev A.A., Ivanushkina N.E., Prut E.V., Berlin A.A. Biodegradable polymer compositions based on polylactide and cellulose. Vysokomolek. Soed. Ser. B. 2016. V. 58. N 1. P. 43-52 (in Russian). DOI: 10.1134/S1560090416010061.
Rogovina S.Z., Prut E.V., Aleksanyan K.V., Krash-eninnikov V.G., Perepelitsyna E.O., Shashkin D.P., Berlin A.A. Compositions based on starch and polylactide. Vysokomolek. Soed. Ser. B. 2019. V. 61. N 3. P. 226-232 (in Russian). DOI: 10.1134/S1560090419030114.
Akim E.L., Rogovina S.Z., Berlin A.A. Fatigue strength of wood and the relaxation state of its polymer compo-nents. Doklady Phys. Chem. 2020. V. 491. P. 33-35 (in Russian). DOI: 10.1134/S0012501620030045.
Akim E.L. Bio-refining of Wood. Khim. volokna. 2016. V. 48. N 3. Р. 181-190 (in Russian). DOI: 10.1007/s10692-016-9765-7.
Rogovina S.Z., Akim E.L., Berlin. A.A. Polymer composite materials and gels with arabinogalactan. Vse Materi-aly. Ensikloped. spravochnik. 2021. N 4. P. 8-15 (in Russian). DOI: 10.1134/S1995421221030266.
Follain N., Chappey C., Dargent, E., Chivrac, F., Crétois, R., Marais S. Structure and Barrier Properties of Bi-odegradable Polyhydroxyalkanoate Films. J. Phys. Chem. 2014. V. 118. P. 6165-6177. DOI: 10.1021/jp408150k.
Iordanskii A.L., Ol’khov A.A., Karpova S.G, Ku-cherenko E.L., Kosenko R.Y., Rogovina S.Z., Chalykh A.E., Berlin, A.A. Influence of the structure and morphology of ultrathin poly(3-hydroxybutyrate) fibers on the diffusion kinetics and transport of drugs. Polym. Sci. Ser. A. 2017. V. 59. P. 343-353. DOI: 10.1134/S0965545X17030075.
Abdelwahab M.A., Flynn A., Chiou B.-S., Imam S., Orts W., Chiellini E. Thermal, mechanical and morpho-logical characterization of plasticized PLA-PHB blends. Polym. Degrad. Stab. 2012. V. 97. P. 1822-1828. DOI: 10.1016/j.polymdegradstab.2012.05.036.
Balogová A.F., Tóth R.H.T., Schnitzer M., Feranc J., Bakoš D., Živcak J. Determination of geometrical and viscoelastic properties of PLA/PHB samples made by ad-ditive manufacturing for urethral substitution. J. Biotech-nol. 2018. V. 284. P. 123-130. DOI: 10.1016/j.jbiotec.2018.08.019.
Arrieta M.P., Samper M.D., Lo’pez, J., Jime´nez A. Combined effect of poly(hydroxybutyrate) and plasticiz-ers on polylactic acid properties for film intended for food packaging. J. Polym. Environ. 2014. V. 22. P. 460-470. DOI: 10.1007/s10924-014-0654-y.
Iordanskii A., Karpova S., Olkhov A., Borobikov P., Kildeeva N., Liu Y. Structure-morphology impact upon segmental dynamics ant diffusion in the biodegradable ultrafine fibers of polyhydroxybutyrate-polylactide blends. Eur. Polym. J. 2019. V. 117. P. 208-216. DOI: 10.1016/j.eurpolymj.2019.05.012.
Rogovina S., Zhorina L., Gatin A., Pru tE., Kuznetsova O., YakhinaA., Olkhov A., Samoylov N., Grishin M., Iordanskii A., Berlin A. Biodegradablе рolylactidepoly(3-Hydroxybutуrate) compositions obtained via blending under sheared formations and electrospinning: characterization and environmental application. Polymers. 2020. 12. P. 1088. DOI: 10.3390/polym12051088.
Mpelwa M., Tang S.F. State of the art of synthetic threshold scale inhibitors for mineral scaling in the petro-leum industry: a review. Pet. Sci. 2019. V. 16. P. 830–849. DOI: 10.1007/s12182-019-0299-5.
Voloshin A.I., Gusakov V.N, Fakhreeva A.V., Dokichev V.A. Scaling prevention inhibitors in oil production. Neftepromysl. Delo. 2018. N 11. P. 60-72 (in Russian). DOI: 10.30713/0207-2351-2018-11-60-72.
Puchina G.R., Ragulin V.V., Telin A.G., Alimbekova S.R., Bakhtizin R.N., Voloshin A.I., Dokichev V.A. Odern practice of salt deposition preventing and removing. Neftegaz. Delo. 2020. V. 18. N 2. P. 72-80 (in Russian). DOI: 10.17122/ngdelo-2020-2-72-80.
Rabizadeh T., Peacock C.L., Benning L.G. Investigating the Effectiveness of Phosphonate Additives in Hindering the Calcium Sulfate Dihydrate Scale Formation. Ind. Eng. Chem. Res. 2020. V. 59. N 33. P. 14970-14980. DOI: 10.1021/acs.iecr.0c03600.
Jarrahian K., Sorbie K.S. Mechanistic Investigation of Adsorption Behavior of Two Scale Inhibitors on Car-bonate Formations for Application in Squeeze Treatments. Energy Fuels. 2020. V. 34. N 4. P. 4484–4496. DOI: 10.1021/acs.energyfuels.0c00326.
Kumar S., Naiya T.K., Kumar T. Developments in oil-field scale handling towards green technology-A review. J. Pet. Sci. Eng. 2018. V. 169. P. 428-444. DOI: 10.1016/j.petrol.2018.05.068.
Mazumder M.A.J. A Review of Green Scale Inhibitors: Process, Types, Mechanism and Properties. Coatings. 2020. V. 10. N 928. P. 1-29. DOI: 10.3390/coatings10100928.
Yu W., Yang H. Chain architectures of various cellulose-based antiscalants on the inhibition of calcium carbonate scale. Sci Rep. 2020. V. 10. N 21906. DOI: 10.1038/s41598-020-78408-w.
Ko S., Wang X., Zhao Y., Dai C., Lu Y.-T., Deng G., Paudyal S., Mateen S., Kan A.T., Tomson M.B. Prevention of Mineral Scale Deposition Using Dispersants and Inhibitors. Conference: SPE Virtual International Oilfield Scale Conference and Exhibition. 2020. SPE-200670-MS. DOI: 10.2118/200670-MS.
Dokichev V.A., Koptyaeva E.I., Ishmuratov F.G., Al-imbekova S.R., Tomilov Yu.V., Nifantyev N.E. Carbo-hydrates - a new class of green scale inhibitors. Neftyanoe Khozvo. 2016. N 5. P. 92-94 (in Russian).
Dokichev V.A., Fakhreeva A.V., Voloshin A.I., Gusakov V.N., Ishmiyarov E.R., Grabovsky S.A. Natrium salt of carboxymethyl cellulose as a basic reagent for creating a line of "green" oilfield reagents. Oborudovanie Tekhnologii dlya Neftegazovogo Kompleksa. 2018. N 5. P. 43-48 (in Russian). DOI: 10.30713/1999-6934-2018-5-43-48.
Fakhreeva A.V., Voloshin A.I., Musin A.F., Telin A.G., Dokichev V.A. Carboxymethylcellulose sodium salt – ef-fective “green” regent for management of calcium car-bonate crystallization and natural gas hydrate formation. IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 525. N 012050. DOI: 10.1088/1757-899X/525/1/012050.
Ishmuratov F.G., Rakhimova N.T., Ishmiyarov E.R., Voloshin A.I., Gusakov V.N., Tomilov Y.V., Nifant’yev N.E., Dokichev V.A. New "green" polysaccharidal inhibitor of gas hydrate formation on the basis of carbox-ymethylcellulose sodium salt. Zhurn. Priklad. Khim. 2018. V. 91. N 4. P. 653-656 (in Russian). DOI: 10.1134/S1070427218040183.
Fagundes K.R.S., Luz R.C. da S., Fagundes F.P., Balaban R.de C. Effect of carboxymethylcellulose on colloi-dal properties of calcite suspensions in drilling fluids. Polímeros. 2018. V. 28. N 4. P. 373-379. DOI: 10.1590/0104-1428.11817.
Fakhreeva A.V., Voloshin A.I., Telin A.G., Magadova L.A., Spirikhin L.V., Dokichev V.A. Inhibitors based on new polysaccharides in technological processes of oil production. Efficiency of inhibition of scale formation and influence on stability of water-oil emulsion. IOP Conf. Ser.: Mater. Sci. Eng. 2020. V. 848. N 012029. DOI: 10.1088/1757-899X/848/1/012018.
Heinze T., Koschella A. Carboxymethyl ethers of cellulose and starch. Macromol. Symp. 2005. V. 223. N 1. P. 13-40. DOI: 10.1002/masy.200550502.
Md. Ibrahim H. Mondal. Carboxymethyl Cellulose. V. I: Synthesis and Characterization. NY.: Nova Science Pub Inc. 2019. 459 p.
Md. Ibrahim H. Mondal. Carboxymethyl Cellulose: V. II: Pharmaceutical and Industrial Applications. NY.: Nova Science Pub Inc. 2019. 495 p.
Batelaan J.G., Van Ginkel C.G., Balk F. Carboxymethylcellulose (CMC). The Handbook of Enviromental Chemistry V. 3. Pt. F. Ed. by O. Hutzinger. Berlin-Heidelberg: Springer-Verlag. 1992. P. 329-336. DOI: 10.1007/978-3-540-47108-0_11.
Betty Anita B., Thatheyus A.J., Ramya D. Biodegradation of Carboxymethyl Cellulose using Aspergillus flavus. Sci. Int. 2013. V. 1. N 4. P. 85-91. DOI: 10.17311/sciintl.2013.85.91.
Chernyayeva Ye.Yu., Sayapova V.V., Alimbekova S.R., Gusakov V.N., Voloshin A.I., Dokichev V.A. Influence of polysaccharides on corrosive resistance of carbon steel. Korroziya: Materialy, Zashchita. 2018. N 5. P. 32-36 (in Russian).
Fakhreeva A.V., Nosov V.V., Voloshin A.I., Dokichev V.A. Synthesis of ethanolammonium salts of carbox-ymethylcellulose and their effect on inhibition of calcium carbonate salt deposition. Bashkir. Khim. Zhurn. 2020. V. 27. N 2. P. 20-26 (in Russian). DOI: 10.17122/bcj-2020-2-20-26.
Fakhreeva A.V., Voloshin A.I., Tomilov Yu.V., Dokichev V.A. Production of Ethanolamine Salts and Amides of carboxymethyl cellulose – perspective oilfield reagents for oil production. IOP Conf. Ser.: (EES). 2020. V. 459. N 052050. DOI: 10.1088/1755-1315/459/5/052050.
Leone G., Torricelli P., Giardino R., Barbucci R. New phosphorylated derivatives of carboxymethylcellulose with osteogenic activity. Polym. Advan. Technol. 2008. V. 19. N 7. P. 824-830. DOI:10.1002/pat.1041.
Fan L., Zhou X., Wu P., Xie W., Zheng H., Tan W., Li Q. Preparation of carboxymethyl cellulose sulfates and its application as anticoagulant and wound dressing. Int. J. Biol. Macromol. 2014. V. 66. P. 245-253. DOI: 10.1016/j.ijbiomac.2014.02.040.
Backfolk K., Lagerge S., Rosenholm J.B., Eklund D. Aspects on the Interaction between Sodium Carbox-ymethylcellulose and Calcium Carbonate and the Relationship to Specific Site Adsorption. J. Colloid Interface Sci. 2002. V. 248. P. 5–12. DOI: 10.1006/jcis.2001.8195.
Liu H., Zhao Y., Peng C., Song S., López–Valdivieso A. Lime mortars – The role of carboxymethyl cellulose on the crystallization of calcium carbonate. Constr. Build. Mater. 2018. V. 168. N 20. P. 169-177. DOI: 10.1016/j.conbuildmat.2018.02.119.
Sanjay Paul, Koyel Pradhan, Asish R. Das. Ethyl Lactate As a Green Solvent: A Promising Bio-compatible Media for Organic Synthesis. Curr. Green Chem. 2016. N 3. P. 111-118. DOI: 10.2174/2213346103666151203203139.
Doble M., Kruthiventi A.K. Alternate Solvents. Green Chem. Eng. 2007. P. 93–104. DOI: 10.1016/B978-012372532-5/50006-7.
EP 1357119 B1. Process for producing lactide and process for producing polylactic acid starting with fermented lactic acid. Toyota Jidosha Kabushiki Kaisha Toyotashi. Aichi 471-8571 (JP).
RU 2664125 C2. Method for processing ammonium lac-tate into lactic acid and its esters. (MUCTR. 2018)
Dix R. Continuous esterification of lactic acid with n-Butyl alcohol. 1970. Thesis. 1341. https://digitalcommons.njit.edu/dissertations/1341.
Kozlovskiy R., Shvets V., Kuznetsov A. Technological aspects of the production of biodegradable polymers and other chemicals from renewable sources using lactic acid. J. Cleaner Production. 2017. V. 155. P. 157-163. DOI: 10.1016/j.jclepro.2016.08.092.
Koshkin S.A., Efimkin D.Yu., Kozlovsky R.A., Kozlovsky I.A., Shvets V.F. Productiuon of bio-propylene gly-col. Khim. Prom-st’ Segodnya. 2013. N 6. P. 20-25 (in Russian).
Anastas P.T., Warner J.C. Green Chemistry: Theory and Practice. New York. Oxford University Press. 2000. 148 p.
Clarke C.J., Tu W.C., Levers O., Bröhl A., Hallett J.P. Green and Sustainable Solvents in Chemical Processes. Chem. Rev. 2018. V. 118. N 2. P. 747-800. DOI: 10.1021/acs.chemrev.7b00571.
Ryan J., Elsmore M.T., Binner E.R., De Focatiis D.S.A., Irvine D.J., Robinson J.P. Solventfree manufacture of methacrylate polymers from biomass pyrolysis products. React. Chem. Eng. 2021. V. 6. P. 335-344. DOI: 10.1039/D0RE00419G.
Bayer P., Von Wangelin A.J. An entirely solventfree photooxygenation of olefins under continuous flow con-ditions. Green Chem. 2020. V. 22. N 8. P. 2359-2364. DOI: 10.1039/D0GC00436G.
Sangon S., Supanchaiyamat N., Sherwood J., McElroy C.R., Hunt A.J. Direct comparison of safer or sustaina-ble alternative dipolar aprotic solvents for use in carbon–carbon bond formation. React. Chem. and Eng. 2020. V. 5. P. 1798-1804. DOI: 10.1039/D0RE00174K.
Lu W., Liu S., Wu Z. Recent Application of Deep Eutec-tic Solvents as Green Solvent in Dispersive Liquid–Liquid Microextraction of Trace Level Chemical Contaminants in Food and Water. Critical Rev. Analyt. Chem. 2020. DOI: 10.1080/10408347.2020.1808947.
Inaloo I. D., Majnooni S. Deep Eutectic Solvents (DES) as Green and Efficient Solvent/Catalyst Systems for the Synthesis of Carbamates and Ureas from Carbonates. Chem. Select. 2019. V. 4. N 27. P. 7811-7817. DOI: 10.1002/slct.201901567.
Cruz H., Jordão N., Branco L.C. Deep eutectic solvents (DESs) as low-cost and green electrolytes for electro-chromic devices. Green Chem. 2017. V. 19. N 7. P. 1653-1658. DOI: 10.1039/C7GC00347A.
Hooshmand S.E., Afshari R., Ramón D J., Varma R.S. Deep eutectic solvents: cuttingedge applications in cross-coupling reactions. Green Chem. 2020. V. 22. N 12. P. 3668-3692. DOI: 10.1039/D0GC01494J.
Machida H., Takesue M., Smith R.L. Green chemical processes with supercritical fluids: Properties, materials, separations and energy. J. Supercrit. Fluids. 2011. V. 60. P. 2-15. DOI: 10.1016/j.supflu.2011.04.016.
Wang C., Duan Z., Fan L., Li J. Supercritical CO2 Fluid Extraction of Elaeagnus mollis Diels Seed Oil and Its An-tioxidant Ability. Molecules. 2019. V. 24. N 5. P. 911-933. DOI: 10.3390/molecules24050911.
Wu H-T., Tsai H-M., Li T-H. Formation of Polyethylene Glycol Particles Using a Low-Temperature Supercritical Assisted Atomization Process. Molecules. 2019. V. 24. N 12. P. 2235-2251. DOI: 10.3390/molecules24122235.
Zhang Q., Zhang S., Deng Y. Recent advances in ionic liquid catalysis. Green Chem. 2011. V. 13. N 10. P. 2619-2637. DOI: 10.1039/C1GC15334J.
Tarasova N.P., Smetannikov Yu.V., Artemkina I.M., Vilesov A.S. Influence of Media on Processes of Radia-tion-Induced Polymerization of White Phosphorus. Phosphorus, Sulfur, and Silicon and the Related Elements. 2008. V. 183. N 2/3. P. 586-593. DOI: 10.1080/10426500701765004.
Esse J., Wasserscheid P., Jess A. Deep desulfurization of oil refinery streams by extraction with ionic liquids. Green Chem. 2004. V. 6. N 7. P. 316-322. DOI: 10.1039/B407028C.
Boros E., Earle M.J., Gılea M.A., Metlen A., Mudring A-V., Rieger F., Robertson A.J., Seddon K.R., To-maszowska A.A., Trusov L., Vylea J.S. On the dissolution of non-metallic solid elements (sulfur, selenium, tel-lurium and phosphorus) in ionic liquids. Chem. Commun. 2010. V. 46. N 5. P. 716-718. DOI: 10.1039/B910469K.
Heidarizadeh F., Rezaee Nezhad E., Sajjadifar S. Novel acidic ionic liquid as a catalyst and solvent for green synthesis of dihydropyrimidine derivatives. Scientia Iranica. 2013. V. 20. N 3. P. 561-565. DOI: 10.1016/j.scient.2012.12.039.
Tarasova N.P., Smetannikov Yu.V., Vilesov A.S., Zanin A.A. Role of reaction media in "green" radiation-induced polymerization of white phosphorus. Pure Appl. Chem. 2009. V. 81. N 11. P. 2115-2122. DOI: 10.1351/PAC-CON-08-10-14.
Corbridge D.E.C. Phosphorus 2000. Chemistry, Bio-chemistry & Technology. Amsterdam: Elsevier. 2000. 1267 p.
Tarasova N.P., Smetannikov Yu.V., Artemkina I.M., Lavrov I.A., Sinaisky M.A., Ermakov V.I. Influence of medium polarity on the process of ion radiation-initiated polymerization of elemental (white) phosphorus. Dokl. Akad. Nauk. 2006. V. 410. N 5. P. 640-642 (in Russian). DOI: 10.1134/S0012500806100077.
Trofimov B.A., Malysheva S.F., Gusarova N.K., Belogorlova N.A., Kuimov V.A., Sukhov B.G., Tarasova N.P., Smetannikov Yu.V., Vilesov A.S., Sinegovskaya L.M., Arsentyev K.Yu., Likhoshvay E.V. Nanocomposites of red phosphorus as new phosphory-lating reagents. Dokl. Akad. Nauk. 2009. V. 427. N 1. P. 54-56 (in Russian). DOI: 10.1134/S0012500809070027.
Holbrey J.D., Reichert W.M., Nieuwenhuyzen M., Sheppard O., Hardacre C., Rogers R.D. Liquid clath-rate formation in ionic liquid–aromatic mixtures. Chem. Commun. 2003. V. 4. P. 476-477. DOI: 10.1039/B212726A.
Lachwa J., Bento I., Duarte M.T., Canongia Lopes J.N., Rebelo L.P.N. Condensed phase behaviour of ionic liquid–benzene mixtures: congruent melting of a [emim][NTf2]·C6H6 inclusion crystal. Chem. Commun. 2006. V. 23. P. 2445-2447. DOI: 10.1039/B602675C.
Pikaev A.K., Kabakchi S.A. Reactivity of primary products of water radiolysis: Reference book. M.: Energoiz-dat. 1982. 200 p. (in Russian).
Skolnik S., Tarbutton G., Bergman W.E. Conversion of Liquid White Phosphorus to Red Phosphorus. II. Particle Size and Surface Area of Red Phosphorus as Functions of the Percentage Conversion. J. Am. Chem. Soc. 1946. V. 68. N 11. P. 2310–2314. DOI: 10.1021/ja01215a053.
Verkade J.G., Quin L.D. Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis. New York: VCH Pub-lishers. 1987. 717 p.
Greaves T.L., Drummond C.J. Ionic liquids as amphiphileself-assembly media. Chem. Soc. Rev. 2008. V. 37. N 8. P. 1709-1726. DOI: 10.1039/B801395K.
Hong K., Zhang H., Mays J.W. Synthesis of Block Co-polymers of Styrene and Methyl Methacrylate by Con-ventional Free Radical Polymerization in Room Temperature Ionic Liquids. Macromolecules. 2002. V. 35. N 15. P. 5738–5741. DOI: 10.1021/ma025518x.
Nguyen T.B. Recent Advances in Organic Reactions Involving Elemental Sulfur. Adv. Synth. Catal. 2017. V. 359. N 7. P. 1066-1130. DOI: 10.1002/adsc.201601329.
Zhang Y., Pavlopoulos N.G., Kleine T.S., Karayilan M., Glass R.S., Char K., Pyun J. Nucleophilic activation of elemental sulfur for inverse vulcanization and dynamic covalent polymerizations. J. Polymer Sci. Pt. A. Poly-mer Chem. 2019. V. 57. N 1. P. 7–12. DOI: 10.1002/pola.29266.
Zhang Y., Konopka K.M., Glass R.S., Char K., Pyun. J. Chalcogenide hybrid inorganic/organic polymers via inverse vulcanization and dynamic covalent polymeriza-tions. Polymer Chem. 2017. V. 8. N 34. P. 5167-5173. DOI: 5167-5173. 10.1039/C7PY00587C.
Zhang Y., Griebel J.J., Dirlam P.T., Nguyen N.A., Glass R.S., Mackay M.E., Char K., Pyun J. Inverse vulcanization of elemental sulfur and styrene for polymeric cathodes in Li-S batteries. J. Polymer Sci. Pt. A. Polymer Chem. 2017. V. 55. N 1. 107–116. DOI: 10.1002/pola.28266.
Griebel J.J., Glass R.S., Char K., Pyun J. Polymerizations with elemental sulfur: A novel route to high sulfur content polymers for sustainability, energy and defense. Progr. Polymer Sci. 2016. V. 58. P. 90-125. DOI: 10.1016/j.progpolymsci.2016.04.003.
Sabakhova G.I., Akhmetova R.T., Yusupova A.A. Mechanism of disclosure of sulfur molecules in the presence and absence of zinc chloride. Vestn. Kazan. Tekhnol. Univ. 2013. V. 16. N 10. P. 48-50 (in Russian).
Tarasova N.P., Krivoborodov E.G., Zanin A.A., Mezhuev Ya.O. Ionic liquids: green solvents and reactive compounds? Reaction of tri-n-butylmethylphosphonium dimethylphosphate with elemental sulfur. Pure Appl. Chem. 2021. V. 93. N 1. P. 29-37. DOI: 10.1515/pac-2019-0804.
Tarasova N.P., Krivoborodov E.G., Egorova A.N., Zanin A.A., Glukhov L.M., Toropygin I.Y., Mezhuev Ya.O. Reaction of 1,3-dimethylimidazolium dime-thylphosphate with elemental sulfur. Pure Appl. Chem. 2020. V. 92. N 8. P. 1297-1304. DOI: 10.1515/pac-2019-1211.
Kubisa P. Vairon J.P. Ring-Opening Polymerization of Cyclic Acetals. Polymer Science: A Comprehensive Reference. Elsevier. 2012. P. 183–211. DOI: 10.1016/B978-0-444-53349-4.00103-5.
Haubs M., Kurz K., Sextro G. Polyoxymethylenes. Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. 2012. 16 p. DOI: 10.1002/14356007.a21_591.pub2.
Brown N. Polymerization of Formaldehyde. J. Macro-molec. Sci.: Pt. A – Chem. 1966. V. 1. N 2. P. 209-230. DOI: 10.1080/10601326708053967.
Reyhanoglu Y., Goktur E. Polyglycolic acid copolymers from one-step cationic polymerization of formaldehyde, carbon monoxide, and epoxides derived from PEG. Polym. Adv. Technol. 2019. V. 30. P. 1789–1795. DOI: 10.1002/pat.4611.
Król-Morkisz K., Karaś E., Majka T.M., Pielichowski K., Pielichowska P. Thermal Stabilization of Polyox-ymethylene by PEG-Functionalized Hydroxyapatite: Examining the Effects of Reduced Formaldehyde Release and Enhanced Bioactivity. Adv. Polym. Technol. 2019. V. 2019. P. 1–17. DOI: 10.1155/2019/9728637.
Archodoulaki V., Lüftl S., Seidler S. Thermal degradation behaviour of poly(oxymethylene): 1. Degradation and stabilizer consumption. Polym. Degrad. Stab. 2004. V. 86. N 1. P. 75-83. DOI: 10.1016/j.polymdegradstab.2004.03.011.
Pielichowski K. The influence of polyoxymethylene molar mass on the oxidative thermal degradation of its nanocomposites with hydroxyapatite. J. Thermal Anal. Calorim. 2016. V. 124. P. 751–765. DOI: 10.1007/s10973-015-5196-6.
Kurenkov V. F., Myagchenkov V.A. Effects of reaction medium on the radical polymerization and copolymerization of acrylamide. Eur. Polymer J. 1980. V. 16. N 12. P. 1229–1239. DOI: 10.1016/0014-3057(80)90030-0.
Lee G.H., Vo N.D., Jeon R.Y., Han S.W., Hong S.U., Oh M. Modeling and simulation for acrylamide polymer-ization of super absorbent polymer. Korean J. Chem. Eng. 2018. V. 35. P. 1791–1799. DOI: 10.1007/s11814-018-0093-x.
Xia Y., He Z., Su J., Hu K. Polyacrylamide gel synthesis and photocatalytic performance of PbBiO2Br nanosheets. Mater. Lett. 2019. V. 241. P. 64–67. DOI: 10.1016/j.matlet.2019.01.045.
Sánchez-Leija R.J., Torres-Lubián J.R., Reséndiz-Rubio A., Luna-Bárcenas G., Mota-Morales J.D. Enzyme-mediated free radical polymerization of acrylamide in deep eutectic solvents. RSC Adv. 2016. V. 6. N 16. P. 13072–13079. DOI: 10.1039/C5RA27468K.
Kumar A., Behera B., Ray S.S. Microwave-assisted surface-initiated redox polymerization of acrylamide with functionalized graphene oxide for aqueous lubricant ad-ditive. RSC Adv. 2015. V. 5. N 49. P. 39474–39481. DOI: 10.1039/C5RA05623C.
Al-Sabagh A. M., Kandile N.G., El-Ghazawy R.A., Noor El-Din M.R., El-sharaky E.A. Synthesis and char-acterization of high molecular weight hydrophobically modified polyacrylamide nanolatexes using novel nonionic polymerizable surfactants. Egypt. J. Petrol. 2013. V. 22. N 4. P. 531–538. DOI: 10.1016/j.ejpe.2013.11.007.
Moulay S., Bensacia N., Garin F., Fechete I., Boos A. Polyacrylamide-Based Sorbents for the Removal of Haz-ardous Metals. Adsorpt. Sci. Technol. 2013. V. 31. N 8. P. 691–709. DOI: 10.1260/0263-6174.31.8.691.
Zang Y., Muller R., Froelich D. Determination of cross-linking density of polymer networks by mechanical data in simple extension and by swelling degree at equilibrium. Polymer. 1989. V. 30. N 11. P. 2060–2062. DOI: 10.1016/0032-3861(89)90294-2.
Baselga J., Hernández-Fuentes I., Masegosa R., Llorente M. Effect of Crosslinker on Swelling and Thermody-namic Properties of Polyacrylamide Gels. Polym. J. 1989. V. 21. P. 467–474. DOI: 10.1295/polymj.21.467.
Parker D.J., Chong S.T., Hasell T. Sustainable inverse-vulcanised sulfur polymers. RSC Adv. 2018. V. 8. N 49. P. 27892–27899. DOI: 10.1039/C8RA04446E.
Rebinder P.A. Physico-chemical mechanics of dispersed structures. M.: Nauka. 1966. P. 3-16 (in Russian).
Koganovsky A.N., Klimenko N.A., Levchenko T.M., Roda I.G. Adsorption of organic substances from water. L.: Khimiya. 1990. 256 p. (in Russian).
Obolenskaya. A.V. Chemistry of lignin. SPb.: LTA. 1993. 79 p. (in Russian).
Teptereva G.A., Shavshukova S. u., Udalova E.A., Konesev V.G. Historical experience of the use of surfac-tants in the domestic oil industry in 1930-1970. Istoriya Nauki Tekhniki. 2018. N 2. P. 21-27 (in Russian).
Deng Y., Zhang W., Wu Y., Yu H., Qiu X. Effect of Molecular Weight on the Adsorption Characteristics of Lignosulfonates. J. Phys. Chem. B. 2011. 115(49). P. 14866-73. DOI: 10.1021/jp208312a.
Gavrilov B.M. Ligno-polymer reagents for drilling fluids. Krasnodar: Enlightenment-South. 2004. 523 p. (in Russian).
Ouyang X, Deng Y, Qian Y, Zhang P, Qiu X. Adsorption Characteristics of Lignosulfonates in Salt-Free and Salt-Added Aqueous Solutions. Biomacromolecules. 2011. 12(9). P. 3313-20. DOI: 10.1021/bm200808p.
Efryushin D.D., Konshin V.V., Protopopov A.V, Klevtcov M.V. Chemical modification of lignins by amino ac-ids. Chem. Natur. Comp. 2015. V. 51. N 5. P. 934-936. DOI: 10.1007/s10600-015-1451-0.
Efryushin D.D., Konshin V.V., Protopopov A.V., Beushev A.A. Modification of technical lignins by car-boxylic acids. Chem. Natur. Comp. 2015. V. 51. N 5. Р. 1007-1008. DOI: 10.1007/s10600-015-1481-7.
Teptereva G.A., Shavshukova S.Yu., Konesev V.G., Ismakov R.A. Functional analysis of lignosulfonates used in drilling technology. Ufa: Neftegazovoe delo. 2017. 92 p. (in Russian).
Frolov Yu.G. Course of colloid chemistry. Surface phe-nomena and dispersed systems. M.: Khimiya. 1982. 400 p. (in Russian).
Chetvertneva I.A., Karimov O.Kh., Teptereva G.A., Movsumzade E.M. Possibilities of improving the quality characteristics of inactive neutral lignosulfonates. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 10. P. 53-58 (in Russian). DOI: 10.6060/ivkkt.20206310.6240.