НОВЫЕ КОМПОЗИТНЫЕ МАТЕРИАЛЫ И ПРОЦЕССЫ ДЛЯ ХИМИЧЕСКИХ, ФИЗИКО-ХИМИЧЕСКИХ И БИОХИМИЧЕСКИХ ТЕХНОЛОГИЙ ВОДООЧИСТКИ

Обзор

  • Irina V. Medvedeva Институт физики металлов им. Н.М. Михеева
  • Olga M. Medvedeva Уральский государственный медицинский университет
  • Andrey G. Studenok Уральский государственный горный университет
  • Gennady A. Studenok Уральский государственный горный университет
  • Evgeniy M. Tseytlin Уральский государственный горный университет
Ключевые слова: вода, очистка, дезинфекция, инновации, нанотехнологии, композитные материалы, новые окислительные технологии, энергетические воздействия

Аннотация

В традиционных методах обработки воды использование химических реактивов может приводить к появлению побочных токсичных продуктов и отходов, требующих сложных энергоемких технологий переработки. В соответствии с принципами устойчивого развития и «зеленых» технологий требуется значительная ревизия существующих методов водоочистки. В обзоре рассмотрены основные направления инновационных разработок в области очистки и дезинфекции воды. Описаны способы модификации агентов водоочистки (флокулянтов, сорбентов, мембран) путем включения в традиционные структуры наночастиц, природосовместимых материалов и «умных» композитов. Перспективно использование композитных наночастиц, в частности, частиц со структурой «магнитное ядро-оболочка», в которых к поверхности привиты функциональные элементы, обеспечивающие селективный захват примесей из воды, в том числе, патогенных микроорганизмов. Наличие магнитного ядра позволяет управлять частицами внешним магнитным полем, что важно для их полного извлечения из воды после выполнения функций. Использование новых композитных флокулянтов, содержащих неорганические и органические компоненты, способные обеспечивать высокоэффективный захват примесей из воды, позволит значительно снизить объемы флокулянтов и образующихся осадков и, таким образом, снизить расходы на переработку осадков и вред от их размещения в природной среде. Важная роль отводится новым углеродным наноструктурам и природным полимерам. В мембранах следующего поколения диспергированные наночастицы могут придавать им бактерицидные и фотокаталитические свойства, обеспечивая высокую эффективность и экономичность дезинфекции. Новым направлением является разработка гибридных структур коагулянтов и мембран со свой-ствами, которые могут управляться внешними факторами - температура, рН, свет, электрические, магнитные, электромагнитные поля. Применение таких «умных» структур приведет к повышению эффективности очистки, снижению энергопотребления и объемов отходов водоочистки, в частности, благодаря уменьшению заиливания мембран. Использование для водоочистки биополимеров и композитов на основе растительного сырья привлекательно их естественным обезвреживанием под воздействием компонентов окружающей среды – воздуха, почвенных микроорганизмов и солнечного света, а также отсутствием вторичного загрязнения. Среди инновационных химических технологий водоочистки важное место занимают усовершенствованные окислительные технологии, в том числе, с применением электромагнитных полей и ультразвука, под воздействием которых удаление вредных органических примесей и обеззараживание воды осуществляются без интенсивного использования химических веществ или образования токсичных побочных продуктов. В области биохимической очистки интеграция процесса очистки сточных вод с системой выращивания микроводорослей может стать перспективной малоотходной и экономически эффективной «зеленой» технологией.

Для цитирования:

Медведева И.В., Медведева О.М., Студенок А.Г., Студенок Г.А., Цейтлин Е.М. Новые композитные материалы и процессы для химических, физико-химических и биохимических технологий водоочистки. Изв. вузов. Химия и хим. технология. 2023. Т. 66. Вып. 1. С. 6-27. DOI: 10.6060/ivkkt.20236601.6538.

Литература

World Health Organisation. Guidelines for Drinking-water Quality: Fourth Edition. 2017. Available from: https://apps.who.int/iris/bitstream/10665/255762/1/9789244548158-rus.pdf?ua=1 [Accessed 29.08.2021].

CAS REGISTRY. The CAS substance collection. Доступно по ссылке: https://www.cas.org/cas-data/cas-registry [Дата обращения 29.08.2021].

Landrigan P.J., Fuller R., Acosta N.J.R., Adeyi O., Arnold R., Basu N., Baldé A.B., Bertollini R., O'Reilly S.B., Boufford J.I., Breysse P.N., Chiles T., Mahidol C., Coll-Seck A.M., Cropper M.L., Fobil J., Fuster V., Greenstone M., Haines A., Hanrahan D., Hunter D., Khare M., Krupnick A., Lanphear B., Lohani B., Martin K., Mathiasen K.V., McTeer M.A., Murray C.J.L., Ndahimananjara J.D., Perera F., Potočnik J., Preker A.S., Ramesh J., Rockström J., Salinas C., Samson L.D., Sandilya K., Sly P.D., Smith K.R., Steiner A., Stewart R.B., Suk W.A., Schayck O.C. P., Yadama G.N., Yumkella K., Zhong M. The Lancet Commission on pollution and health. Lancet. 2017. V. 391. P. 462-512. DOI: 10.1016/S0140-6736(17)32345-0.

Reference and legal system «Consultant Plus». The order of the Chief medical officer of the Russian Federation of 28.01.2021 N 2 "On the adoption of health and safety rules SanPiN 1.2.3685-21 "Hygienic standards and re-quirements to provision of safety and (or) harmlessness of environmental factors for the people" (together with "SanPiN 1.2.3685-21. Health regulations and standards...") (Registered with the Ministry of Justice of the Russian Federation on 29.01.2021 N 62296). Available from: http://www.consultant.ru/document/cons_doc_LAW_375839/ [Accessed 29.08.2021].

Reference and legal system «Consultant Plus». The order of the Ministry of Agriculture of the Russian Federation of 13.12.2016 N 552 (in the version of 10.03.2020) "On the adoption of the water quality standards of the water bodies of the fisheconomic purpose, including norms establish-ing the maximum permissible concentrations of harmful substances in the water of the water bodies of the fisheconomic purpose" (Registered with the Ministry of Justice of the Russian Federation on 13.01.2017 N 45203). Available from: http://www.consultant.ru/document/cons_doc_LAW_211155/ [Accessed 28.09.2021].

Bahadar H., Maqbool F., Niaz K., Abdollahi M. Toxicity of Nanoparticles and an overview of current experimental models. Iran Biomed J. 2016. V. 20. N 1. P. 1–11. DOI: 10.7508/ibj.2016.01.001.

Francis A.P., Devasena T. Toxicity of carbon nanotubes: A review. Toxicol. Indust. Health. 2018. V. 34. N 3. P. 200-210. DOI: 10.1177/0748233717747472.

Kobayashi N., Izumi H., Morimoto Y. Review of toxicity studies of carbon nanotubes. J. Occup. Health. 2017. V. 59. N 5. P. 394–407. DOI: 10.1539/joh.17-0089-RA.

Sukhanova A., Bozrova S., Sokolov P., Berestovoy M., Karaulov A., Nabiev I. Dependence of Nanoparticle Tox-icity on Their Physical and Chemical Properties. Nanoscale Res. Lett. 2018. V. 13. P. 44. DOI: 10.1186/s11671-018-2457-x.

Bouloudenine M., Bououdina M. Toxic Effects of Engineered Nanoparticles on Living Cells. In: Pharmaceutical Sciences: Breakthroughs in Research and Practice. 2017. IGI Global. P. 1394-1427. IGI Global. DOI: 10.4018/978-1-5225-1762-7.ch053.

Hernández-Maldonado A.J., Blaney L. Contaminants of Emerging Concern in Water and Wastewater. Adv. Treat. Proc. 2020. P. 409-418.

Gore A. C., Crews D., Doan L. L., Merrill M. L., Patisaul H., Zota A. Introduction to endocrine disrupting chemicals (EDCs): A guide for public interest organizations and policymarkers. Endocrine society and IPEN (In-ternational Pollutants Elimination Network). 2014. P. 80. Available at: https://ipen.org/sites/default/files/documents/ipen-intro-edc-v1_9d-ru-web.pdf [Access date: 11.01.2022].

Dolina L.F., Savina O.P. The Water purification of the drug residues. Nauka ta progress transportu. Visn. Dnipropetr. Nats. Univ. Zaliz. Transp. im. akad. V. Laz-aryana. 2018. N 3 (75). P. 36-51 (in Russian). DOI: 10.15802/stp2018/134675.

Charuaud L., Jardé E., Jaffrézic A., Liotaud M., Goyat Q., Mercier F., Le Bot B. Veterinary pharmaceutical resi-dues in water resources and tap water in an intensive husbandry area in France. Sci. Total Environ. 2019. V. 664. P. 605-615. DOI: 10.1016/j.scitotenv.2019.01.303.

Curran E.T., Wilkinson M., Bradley T. Chemical disinfectants: controversies regarding their use in low-risk healthcare environments (part 1). J. Infect. Prev. 2019. V. 20. P. 76–82. DOI: 10.1177/1757177419828139.

Inetianbor J.E., Yakubu J.M., Ezeonu C.S. Effects of food additives and preservatives on man – a review. Asian J. Sci. Technol. 2015. V. 6. P. 1118-1135.

Lellis B., Fávaro-Polonio C.Z., Pamphile J.A., Polonio J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019. V. 3. P. 275-290. DOI: 10.1016/j.biori.2019.09.001.

United States Environmental Protection Agency. Health Effects from Cyanotoxins. Доступно по ссылке: https://www.epa.gov/cyanohabs/health-effects-cyanotoxins [Дата обращения 11.01.2022].

Naghdi M., Metahni S., Ouarda Y., Satinder K. Brar, Das R.K., Cledon M. Instrumental approach toward un-derstanding nano-pollutants. Nanotechnol. Environ. Eng. 2017. V. 2. DOI: 10.1007/s41204-017-0015-x.

Núñez A.A., Astorga D., Cáceres‑Farías L., Bastidas L., Villegas C.S., Macay K., Christensen J.H. Microplastic pollution in seawater and marine organisms across the Tropical Eastern Pacifc and Galápagos. Sci. Rep. 2021. V. 11. DOI: 10.1038/s41598-021-85939-3.

Cutroneo L., Reboa A., Besio G., Borgogno F., Canesi L., Canuto S., Dara M., Enrile F., Forioso I., Greco G., Lenoble V., Malatesta A., Mounier S., Petrillo M., Rovetta R., Stocchino A., Tesan J., Vagge G., Capello M. Microplastics in seawater: sampling strategies, laboratory methodologies, and identification techniques applied to port environment. Environ Sci. Pollut. Res. 2020. V. 27. P. 8938–8952. DOI: 10.1007/s11356-020-07783-8.

Kihara S., Köper I., Mata J.P., McGillivray D.J. Reviewing nanoplastic toxicology: It's an interface problem. Adv. Collo Interface Sci. 2021. V. 288. N 102337. DOI: 10.1016/j.cis.2020.102337.

Shannon M.A., Bohn P.W., Elimelech M., Georgiadis J.G., Marinas B.J., Mayes A.M. Science and Technology for Water Purification in the Coming Decades. Nature. 2008. V. 452. P. 301-310. DOI: 10.1038/nature06599.

Anastas P., Eghbali N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010. V. 39. P. 301–312. DOI: 10.1039/b918763b.

The Handbook of the chemist 21: Khimiya i khimicheskaya tekhnologiya. Available at: https://chem21.info/info/1584448/ [Access date: 11.01.2022].

Snyder S.A., Vanderford B.J., Rexing D.J. Trace Analysis of Bromate, Chlorate, Iodate, and Perchlorate in Natural and Bottled Waters. Environ. Sci. Technol. 2005. V. 39. P. 4586–4593. DOI: 10.1021/es047935q.

Jasper J.T., Yang Y., Hoffmann M.R. Toxic Byproduct Formation during Electrochemical Treatment of Latrine Wastewater. Environ. Sci. Technol. 2017. V. 51. P. 7111–7119. DOI: 10.1021/acs.est.7b01002.

Dutta K., De S. Smart responsive materials for water purification: an overview. J. Mater. Chem. A. 2017. V. 5. N 42. P. 22095-22112. DOI: 10.1039/C7TA07054C.

Bolto B., Gregory J. Organic polyelectrolytes in water treatment. Water Res. 2007. V. 41. P. 2301–2324. DOI: 10.1016/j.watres.2007.03.012.

Lee K.E, Morad N., Teng T.T., Poh B.T. Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: A review. Chem. Eng. J. 2012. V. 203. P. 370–386. DOI: 10.1016/j.cej.2012.06.109.

Macczak P., Kaczmarek H., Ziegler-Borowska M. Re-cent Achievements in Polymer Bio-Based Flocculants for Water Treatment. Materials. 2020. V. 13. P. 495. DOI: 10.3390/ma13183951.

Sathiyanarayanana G., Kiranb G.S., Selvinc J. Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids Surfaces B: Biointerfaces. 2013. V. 102. P. 13-20. DOI: 10.1016/j.colsurfb.2012.07.032.

Gao S., Tang G., Hua D., Xiong R., Han J., Jiang S., Zhang Q., Huang C. Stimuli-responsive bio-based polymeric systems and their applications. J. Mater Chem. B. 2019. V. 7. P. 709–729. DOI: 10.1039/C8TB02491J.

Wei W., Zhu M., Wu S., Shen X., Li S. Stimuli-Responsive Biopolymers: An Inspiration for Synthetic Smart Materials and Their Applications in Self-Controlled Catalysis. J. Inorg. Organomet. Polym. 2020. V. 30. P. 69–87. DOI: 10.1007/s10904-019-01382-y.

Wei M., Gao Y., Li X., Serpe M.J. Stimuli-responsive polymers and their applications. Polym. Chem. 2017. V. 8. P. 127-143. DOI: 10.1039/C6PY01585A.

Hua B., Yang J., Lester J., Deng B. Physico-Chemical Processes. Water Environ. Res. 2013. V. 85. N 10. P. 963-991 DOI: 10.2175/106143013X13698672321823.

Lee A., Elam J.W., Darling S. Membrane Materials for Water Purification: Design, Development and Application. Environ. Sci.: Water Res. Technol. 2016. 2. P. 17-42. DOI: 10.1039/C5EW00159E.

Savage N., Diallo M., Duncan J., Street A., Sustich R. Nanotechnology applications for clean water. William An-drew Publ. 2009. 700 p.

Qu X., Alvarez P.J.J., Li Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013. V. 47. P. 3931-3946. DOI: 10.1016/j.watres.2012.09.058.

Sabalanvand S., Hazrati H., Jafarzadeh Y., Jafarizad A., Gharibian S. Investigation of Ag and magnetite nano-particle effect on the membrane fouling in membrane bioreactor. Internat. J. Environ. Sci. Technol. 2021. 18. P. 3407-3418. DOI: 10.1007/s13762-020-03053-9.

Zheng X., Shen Z.P., Shi L., Cheng R., Yuan D.H. Photocatalytic Membrane Reactors (PMRs) in Water Treat-ment: Configurations and Influencing Factors. Catalysts. 2017. V. 7. P. 224-254. DOI: 10.3390/catal7080224.

Ihsanullah. Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Separat. Purificat. Technol. 2019. V. 209. P. 307–337. DOI: 10.1016/j.seppur.2018.07.043.

Fuwada A., Ryub H., Malmstadt N., Kima S. M., Jeon T.J. Biomimetic membranes as potential tools for water purification: Preceding and future avenues. Desalination. 2019. V. 458. P. 97-115. DOI: 10.1016/j.desal.2019.02.003.

Luo W., Xie M., Song X., Guo W., Ngod H.H., Zhou J.L., Nghiem L.D. Biomimetic aquaporin membranes for osmotic membrane bioreactors: Membrane performance and contaminant removal. Biores. Technol. 2018. V. 249. P. 62-68. DOI: 10.1016/j.biortech.2017.09.170.

Ali I. New Generation Adsorbents for Water Treatment. Chem. Rev. 2012. V. 112. P. 5073−5091. DOI: 10.1021/cr300133d.

Singh N.B., Nagpal G., Agrawal S., Rachna. Water purification by using Adsorbents: A Review. Environ. Tech-nol. Innov. 2018. V. 11. P. 187–240. DOI: 10.1016/j.eti.2018.05.006.

Bora T., Dutta J. Applications of Nanotechnology in Wastewater Treatment - A Review. J. Nanosci. Nanotech-nol. 2014. V. 14. P. 613–626. DOI: 10.1166/jnn.2014.8898.

Kofman V.Ya. Nanoparticles of metallic iron for the purifying of the ground water. Vodosnab. San. Tekhnika. 2012. N 12. P. 24-28 (in Russian).

Ebenezer C.N., Ajibade P.A. Multifunctional Magnetic Oxide Nanoparticle (MNP) Core-Shell: Review of Synthe-sis, Structural Studies and Application for Wastewater Treatment. Molecules. 2020. V. 25. N 4110. P. 1-25. DOI: 10.3390/molecules25184110.

Mohammed L., Gomaa H.G., Ragab D., Zhu J. Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology. 2017. V. 30. P. 1-14. DOI: 10.1016/j.partic.2016.06.001.

Cundy A.B., Hopkinson L., Whitby R.L.D. Use of iron-based technologies in contaminated land and groundwater remediation: A review. Sci.Total Environ. 2008. V. 400. P. 42–51. DOI: 10.1016/j.scitotenv.2008.07.002.

Scaria J., Nidheesh P.V., Kumar M.S. Synthesis and applications of various bimetallic nanomaterials in water and wastewater treatment. J. Environ. Manag. 2020. V. 259. DOI: 10.1016/j.jenvman.2019.110011.

Miklos D., Rem Ch., Jekel M., Linden K., Drewes J., Hübner U. Evaluation of advanced oxidation processes for water and wastewater treatment. A critical review. Water Res. 2018. V. 139. P. 118-131 DOI: 10.1016/j.watres.2018.03.042.

Dabwan A.H.A., Kaneco S., Katsumata H., Suzuki T., Egusa K., Ohta K. Simultaneous removal of trihalome-thanes by bimetallic Ag/Zn: kinetics study. Front. Chem. Eng. China. 2010. V. 4. P. 322–327. DOI: 10.1007/s11705-009-0261-y.

Freitas C.M.A.S., Soares O.S.G.P., Orfao J.J.M., Fonseca A.M., Pereira M.F.R., Neves I.C. Highly efficient reduction of bromate to bromide over mono and bimetallic ZSM5 catalysts. Green Chem. 2015. V. 17. P. 4247–4254. DOI: 10.1039/C5GC00777A.

Nie Y., Xing S., Hu C., Qu J. Efficient removal of toxic pollutants over Fe–Co/ZrO2 bimetallic catalyst with ozone. Catal. Lett. 2012. V. 142. P. 1026–1032. DOI: 10.1007/s10562-012-0849-6.

Cai C., Wang L., Gao H., Hou L., Zhang H. Ultrasound enhanced heterogeneous activation of peroxydisulfate by bimetallic Fe-Co/GAC catalyst for the degradation of Acid Orange 7 in water. J. Environ. Sci. 2014. V. 26. P. 1267–1273. DOI: 10.1016/S1001-0742(13)60598-7.

Ray S.S., Gusain R., Kumar N. Carbon Nanomaterial-Based Adsorbents for Water Purification. Fundamentals and Applications. A volume in Micro and Nano Technologies. Elsevier. 2020. 406 p. DOI: 10.1016/C2019-0-04201-X.

Georgakilas V., Perman J.A., Tucek J., Zboril R. Broad Family of Carbon Nanoallotropes: Classification, Chemis-try, and Applications of Fullerenes, Carbon Dots, Nano-tubes, Graphene, Nanodiamonds, and Combined Super-structures. Chem. Rev. 2015. V. 115. N 11. P. 4744–4822. DOI: 10.1021/cr500304f.

Adorinni S., Cringoli M.C., Perathoner S., Fornasiero P., Marchesan S. Green Approaches to Carbon Nanostructure-Based Biomaterials. Appl. Sci. 2021. V. 11. P. 1-20. DOI: 10.3390/app11062490.

Balasubramanian K., Burghard M. Chemically Functionalized Carbon Nanotubes. Small. 2005. V. 1. N 2. P. 180 –192. DOI: 10.1002/smll.200400118.

Dyachkowa T.P., Tkachew A.G. The methods of functionalization and modification of carbon nanotubes. M.: Izd. dom «Spektr». 2013. 152 p. (in Russian).

Ma L., Dong X., Chen M., Zhu L., Wang C., Yang F., Dong Y. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review. Membranes (Basel). 2017. V. 7. N 1. DOI: 10.3390/membranes7010016.

Sapurina I.Yu., Shishov M.A., Ivanova V.T. Sorbents for water purification based on conjugated polymers. Russ. Chem. Rev. 2020. V. 89. N 10. P. 1115-1131. DOI: 10.1070/RCR4955.

Schwegmann H., Feitz A.J., Frimmel F.H. Influence of the zeta potential on the sorption and toxicity of iron oxide nanoparticles on S. cerevisiae and E. coli. J. Colloid Interface Sci. 2010. V. 347. P. 43–48. DOI: 10.1016/j.jcis.2010.02.028.

Das R., Leo B.F., Murphy F. The Toxic Truth About Carbon Nanotubes in Water Purification: a Perspective View. Nanosc. Res. Lett. 2018. V. 13. N 183. DOI: 10.1186/s11671-018-2589-z.

Pikula K., Zakharenko A., Chaika V., Em I., Nikitina A., Avtomonov E., Tregubenko A., Agoshkov A., Mishakov I., Kuznetsov V., Gusev A., Park S., Golokhvast K. Toxicity of Carbon, Silicon, and Metal-Based Nanoparticles to Sea Urchin Strongylocentrotus intermedius. Nanomaterials. 2020. V. 10. P. 1825. DOI: 10.3390/nano10091825.

Medvedeva I., Uimin M., Yermakov A., Mysik A., Byzov I., Nabokova T., Gaviko V., Shchegoleva N., Zhakov S., Tsurin V., Linnikov O., Rodina I., Platonov V., Osipov V. Sedimentation of Fe3O4 nanosized magnetic particles in water solution enhanced in a gradient magnetic field. J. Nanopart. Res. 2012. V. 14. P. 740–750. DOI: 10.1007/s11051-012-0740-9.

Medvedeva I., Bakhteeva Yu., Zhakov S., Revvo A., Byzov I., Uimin M., Yermakov A., Mysik A. Sedimentation and aggregation of magnetite nanoparticles in water by a gradient magnetic field. J. Nanopart. Res. 2013. V. 15. N 11. P. 2054. DOI: 10.1007/s11051-013-2054-y.

Medvedeva I., Bakhteeva Yu., Zhakov S., Revvo A., Uimin M., Yermakov A., Byzov I., Mysik A., Shchegoleva N. Separation of Fe3O4 Nanoparticles from Water by Sedimentation in a Gradient Magnetic Field. J. Water Res. Protect. 2015. V. 7. N 02. P. 111-118. DOI: 10.4236/jwarp.2015.72009.

Bakhteeva Iu.A., Medvedeva I.V., Uimin M.A., Byzov I.V., Zhakov S.V., Yermakov A.E., Shchegoleva N.N. Magnetic sedimentation and aggregation of Fe3O4@SiO2 nanoparticles in water medium. Separat. Purificat. Technol. 2016. V. 159. P. 35–42. DOI: 10.1016/j.seppur.2015.12.043.

Bakhteeva Iu.A., Medvedeva I.V., Byzov I.V., Zhakov S.V., Uimin M.A., Yermakov A.E. Speeding up the mag-netic sedimentation of surface-modified iron-based nano-particles. Separat. Purificat. Technol. 2017. V. 188. P. 341–347. DOI: 10.1016/j.seppur.2017.07.053.

Bakhteeva Iu.A., Medvedeva I.V., Zhakov S.V., Byzov I.V., Filinkova M.S., Uimin M.A., Murzakaev A.M. Magnetic separation of water suspensions containing TiO2 photocatalytic nanoparticles. Separat. Purificat. Technol. 2021. V. 269. N 118716. DOI: 10.1016/j.seppur.2021.118716.

Oka T., Kanayama H., Tanaka K., Fukuia S., Ogawa T., Sato T., Ooizumi M., Terasawa T., Itoh Y., Yabuno R. Waste water purification by magnetic separation technique using HTS bulk magnet system. Physica C: Su-perconduct. 2009. V. 469. N 15–20. P. 1849-1852. DOI: 10.1016/j.physc.2009.05.123.

Gupta V.K., Nayak A., Agarwal S. Bioadsorbents for remediation of heavy metals: Current status and their fu-ture prospects. Environ. Eng. Res. 2015. V. 20. N 1. P. 1025-1226. DOI: 10.4491/eer.2015.018.

Politaeva N.A., Atamanyuk I.V., Smyatskaya Yu.A., Kuznetsova T.A., Toumi A., Razgovorov P.B. Waste-free technology of chlorella sorokiniana microalgae biomass usage for lipids and sorbents production. ChemChemTech. [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2018. V. 61. N 12. P. 137-143 DOI: 10.6060/ivkkt.20186112.5795.

Aksu Z. Application of biosorption for the removal of organic pollutants: a review. Proc. Biochem. 2005. V. 40. N 3–4. P. 997-1026. DOI: 10.1016/j.procbio.2004.04.008.

Ahluwalia S.S, Goyal D. Microbi al and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 2007. V. 98. N 12. P. 2243-2257. DOI: 10.1016/j.biortech.2005.12.006.

Kofman V.Ya. New oxidation technologies of the water and wastewater purification. Part 2. Vodosnab. San. Tekhnika. 2013. N 11. P. 70–77 (in Russian).

Deng Y., Zhao R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. 2015. V. 1. P. 167–176. DOI: 10.1007/s40726-015-0015-z.

Garrido-Cardenas J.A., Esteban-García B., Agüera A., Sánchez-Pérez J.A., Manzano-Agugliaro F. Wastewater Treatment by Advanced Oxidation Process and Their Worldwide Research Trends. Int J. Environ Res Public Health. 2020. V. 17. N 1. P. 1-19. DOI: 10.3390/ijerph17010170.

Krishnan S., Rawindran H., Sinnathambi C.M., Lim J.W. Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants. IOP Conf. Ser.: Mater. Sci. Eng. 2017. V. 206. N 1. DOI: 10.1088/1757-899X/206/1/012089.

Mishra N.S., Reddy R., Kuila A., Rani A., Mukherjee P., Nawaz A., Pichiah S. A Review on Advanced Oxidation Processes for Effective Water Treatment. Curr. World Environ. 2017. V. 12. N 3. P. 2577-2641. DOI: 10.12944/CWE.12.3.02.

Mohajerani, Mehrvar M., Ein-Mozaffari F. An overview of the integration of advanced oxidation technologies and other processes for water and wastewater treatment. Inter-nat. J. Eng. (IJE). 2009. V. 3. N 2. P. 120-146.

Rekhate Chh. V., Srivastava J.K. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater - A review. Chem. Eng. J. Adv. 2020. V. 3. N 100031. DOI: 10.1016/j.ceja.2020.100031.

Dang T.T., Do V.M., Trinh V.T. Nano-Catalysts in Ozone-Based Advanced Oxidation Processes for Wastewater Treatment. Curr. Pollution Rep. 2020. V. 6. P. 217–229. DOI: 10.1007/s40726-020-00147-3.

Zhelovitskaya A.V., Dresvyannikov A.F., Chudakova O.G. The use of the promising oxidation processes for the treatment of wastewater containing pharmaceuticals. Vestn. Tekhnol. Univ. 2015. V. 18. N 20. P. 73-79 (in Russian).

Abhilasha J., Marazban K., Saima Kh. Greener and Expedient Approach for the Wastewater Treatment by Fenton and Photo-Fenton Processes: A Review. Asian J. Chem. Pharm. Sci. 2016. V. 1. N 1. P. 1-22. DOI: 10.18311/ajcps/2016/6134.

Xu M., Wu C., Zhou Y. Advancements in the Fenton Process for Wastewater Treatment. In: Advanced Oxidation Processes - Applications, Trends, and Prospects. London, United Kingdom: IntechOpen. 2020. [Online]. DOI: 10.5772/intechopen.90256.

Dey T. Nanotechnologies for water purification. Boca Raton USA. 2012. 260 p.

Kar P., Shukla K., Jain P., Sathiyan G., Gupta R.K. Semiconductor based photocatalysts for detoxification of emerging pharmaceutical pollutants from aquatic systems: A critical review. Nano Mater. Sci. 2021. V. 3. N 1. P. 25-46. DOI: 10.1016/j.nanoms.2020.11.001.

Yaemsunthorn K., Kobielusz M., Macyk W. TiO2 with Tunable Anatase-to-Rutile Nanoparticles Ratios.: How Does the Photoactivity Depend on the Phase Composition and the Nature of Photocatalytic Reaction? ACS Appl. Nano Mater. 2021. V. 4. N 1. P. 633-643. DOI: 10.1021/acsanm.0c02932.

Molinari R., Argurio P., Szymański K., Darowna D., Mozia S. Chap. 4. Photocatalytic membrane reactors for wastewater treatment. In: Curr. Trends Future Develop. (Bio-) Membranes. 2020. P. 83–116. DOI: 10.1016/b978-0-12-816823-3.00004-6.

Li Q., Kong H., Jia R., Shao J., Yiliang He. Enhanced catalytic degradation of amoxicillin with TiO2–Fe3O4 com-posites via a submerged magnetic separation membrane photocatalytic reactor (SMSMPR). RSC Adv. 2019. V. 9. N 12538. DOI: 10.1039/C9RA00158A.

Du S., Lian J., Zhang F. Visible Light-Responsive N-Doped TiO2 Photocatalysis: Synthesis, Characterizations, and Applications. Trans. Tianjin Univ. 2022. V. 28. P. 33–52. DOI: 10.1007/s12209-021-00303-w.

Sescu A.M., Favier L., Lutic D., Soto-Donoso N., Ciobanu G., Harja M. TiO2 Doped with Noble Metals as an Ef-ficient Solution for the Photodegradation of Hazardous Organic Water Pollutants at Ambient Conditions. Water. 2021. V. 13. N 1. DOI: 10.3390/w13010019.

Gemici B.T., Karel F.B., Karaer F., Koparal A.S. Water disinfection with advanced methods: Successive and hy-brid application of antibacterial column with silver, ultra-sound and UV radiation. Appl. Ecol. Environ. Res. 2018. V. 16. N 4. P. 4667–4680. DOI: 10.15666/aeer/1604_46674680.

Fetyan N.A.H., Salem Attia T.M. Water purification using ultrasound waves: application and challenges. Arab J. Basic Appl. Sci. 2020. V. 27. N 1. P. 194-207. DOI: 10.1080/25765299.2020.1762294.

Mason T.J., Joyce E., Phull S.S., Lorimer J.P. Potential uses of ultrasound in the biological decontamination of water. Ultrason. Sonochem. 2003. V. 10. N 6. P. 319–323. DOI: 10.1016/S1350-4177(03)00102-0.

Joyce E.M., Mason T.J., Lorimer J.P. Application of UV radiation or electrochemistry in conjunction with power ultrasound for the disinfection of water. Internat. J. Environ. Pollut. 2006. V. 27. N 1, 2, 3. P. 222–230. DOI: 10.1504/IJEP.2006.010465.

Oturan M.A., Sires I., Oturan N., Perocheau S., Laborde J.L., Trevin S. Sonoelectro-Fenton process: A nov-el hybrid technique for the destruction of organic pollutants in water. J. Electroanalyt. Chem. 2008. V. 624. N 1–2. P. 329–332. DOI: 10.1016/j.jelechem.2008.08.005.

Popova S.A., Matafonova G.G., Batoev V.B. Sonophoto-chemical oxidation of organic pollutants in aqueous solutions using persulfate. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 10. P. 105-109 (in Russian). DOI: 10.6060/ivkkt.20206310.6233.

Ghaedi M., Hajjati S., Mahmudi Z., Tyagi I., Agarwal S., Maity A., Gupta V.K. Modeling of competitive ultra-sonic assisted removal of the dyes - Methylene blue and Safranin-O using Fe3O4 nanoparticles. Chem. Eng. J. 2015. V. 268. P. 28–37. DOI: 10.1016/j.cej.2014.12.090.

Moreira F.C., Boaventura R.A.R., Brillas E., Vilar V.J.P. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Appl. Catal. B: Environ. 2017. V. 202. P. 217-261. DOI: 10.1016/j.apcatb.2016.08.037.

Nozhevnikova A.N., Simankova M.V., Litti Yu.V. The use of the microbial process of the anaerobic ammonium oxidation (ANAMMOX) for the biotechnological treatment of wastewater. Biotekhnologiya. 2011. N 5. P. 8–31 (in Russian). DOI: 10.1134/S0003683812080042.

Hu Z., Lotti T., de Kreuk M., Kleerebezem R., van Loosdrecht M., Kruit J., Jetten M. S., Kartal B. Nitro-gen Removal by a Ninritation-Anammox Bioreactor at Low Temperature. Appl. Environ. Microbiol. 2013. V. 79. N 8. P. 2807—2812. DOI: 10.1128/AEM.03987-12.

Shchegolkova N.M., Moyzhes O.V., Shashkina P.S. Photobioreactor for the wastewater cleansing of biogenic elements and for the disinfection. Voda: Khimiya Ekologiya. 2010. N 1. P. 9-16 (in Russian).

Ashok V., Gupta S.K., Shriwastav A. Photobioreactors for Wastewater Treatment. In: Application of Microalgae in Wastewater Treatment. Springer Nature. 2019. P. 383-409. DOI: 10.1007/978-3-030-13913-1_18.

Ngo H.H., Vo H.N.P., Guo W., Bui X.-T., Nguyen P.D., Nguyen T.M.H., Zhang X. Advances of Photobioreactors in Wastewater Treatment: Engineering Aspects, Applications and Future Perspectives. In: Water Wastewater Treat. Technol. 2018. P. 297–329. DOI: 10.1007/978-981-13-3259-3_14.

Mehariya S., Goswami R., Verma P., Lavecchia R., Zuorro A. Integrated Approach for Wastewater Treatment and Biofuel Production in Microalgae Biorefineries. Energies. 2021. V. 14. P. 1-26. DOI: 10.3390/en14082282.

Fraunhofer IBP. Microalgae a sustainable resource for valuable compounds and energy. Доступно по ссылке: https://www.cbp.fraunhofer.de/content/dam/igb/documents/brochures/nachhaltige-chemie/algen/1703_BR_algen_en.pdf [Дата обращения 29.08.2021].

Опубликован
2023-01-01
Как цитировать
Medvedeva, I. V., Medvedeva, O. M., Studenok, A. G., Studenok, G. A., & Tseytlin, E. M. (2023). НОВЫЕ КОМПОЗИТНЫЕ МАТЕРИАЛЫ И ПРОЦЕССЫ ДЛЯ ХИМИЧЕСКИХ, ФИЗИКО-ХИМИЧЕСКИХ И БИОХИМИЧЕСКИХ ТЕХНОЛОГИЙ ВОДООЧИСТКИ. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ», 66(1), 6-27. https://doi.org/10.6060/ivkkt.20236601.6538
Раздел
Обзорные статьи