ESTIMATION OF THE EQUATION PARAMETERS OF THE ELASTOPLASTIC STATE OF THE MATERIAL BY THE RESULTS OF INSTRUMENTAL INDENTING
Abstract
This paper discusses the possibility of determining the coefficients of the equation of state describing the elastoplastic behavior of the material under study by comparing experimental data with model calculations. The applied method of instrumental indentation, by introducing additional techniques, allows one to obtain not only hardness and elastic modulus, but also additional information about the dependence of these values on the immersion depth of the indenter, as well as about the viscoelastic properties of the test material. The study was carried out using an upgraded NanoScan-4D nanohardness tester equipped with a sapphire spherical indenter. The shape of the indenter was obtained by scanning with an atomic force microscope. The need to work with minimal loads and maximum lateral resolution, which is required for studying structured materials, led to the need to use the NanoScan-4D nanoindentation module and an indenter with a radius of curvature less than 20 μm. The results of measurements for a spherical indenter in the study of materials with various types of chemical bonds are presented. In addition to metal samples (steel, aluminum, aluminum alloys D16 and AMg6), polycarbonate and fused silica samples were measured. The data obtained indicate the linear character of the sigma-epsilon curve for the studied materials. Based on the analysis of the data obtained, it is concluded that this kind of research is promising and that the results of instrumental indentation are informative in terms of obtaining information on the parameters of the elastoplastic behavior of the test material. An important direction of further research, expanding the possibilities of obtaining additional information on elastoplastic properties, is the development of a technique for obtaining reliable information on the sigma-epsilon diagram when indenting crystalline materials with indenters with different apex angles.
References
Hyun H.C., Lee J.H., Kim M., Lee H. A spherical indentation technique for property evaluation of hyperelastic rubber. J. Mater. Res. 2012. V. 27. N 20. P. 2677–2690. DOI: 10.1557/jmr.2012.241.
Phadikar J.K., Bogetti T.A., Karlsson A.M. On estab-lishing elastic-plastic properties of a sphere by indentation testing. Int. J. Solids Struct. 2012. V. 49. N 14. P. 1961–1972. DOI: 10.1016/j.ijsolstr.2012.04.001.
Park S.-J., Seo M.-K. Solid-Solid Interfaces. Interface Sci. Technol. 2011. V. 18. P. 253–331. DOI: 10.1016/B978-0-12-375049-5.00004-9.
Zhang Y. Transitions between different contact models. J. Adhes. Sci. Technol. 2008. V. 22. N 7. P. 699–715. DOI: 10.1163/156856108X309648.
Ghosh A., Arreguin-Zavala J., Aydin H., Goldbaum D., Chromik R., Brochu M. Investigating cube-corner inden-tation hardness and strength relationship under quasistatic and dynamic testing regimes. Mater. Sci. Eng. A. 2016. V. 677. P. 534–539. DOI: 10.1016/j.msea.2016.08.067.
Lee H., Haeng Lee J., Pharr G.M. A numerical approach to spherical indentation techniques for material property evaluation. J. Mech. Phys. Solids. 2005. V. 53. N 9. DOI: 10.1016/j.jmps.2005.04.007.
Lim D., Lee J.H., Choi Y., Lee H. A numerical approach to spherical indentation techniques for creep property evaluation. Trans. Korean Soc. Mech. Eng. A. 2013. V. 37. N 10. P. 1229–1237. DOI: 10.3795/KSME-A.2013.37.10.1229.
Prakash R.V., Chow S.S. An evaluation of stress-strain property prediction by Automated Ball Indentation (ABI) testing. J. Test. Eval. 2007. V. 35. N 3. P. 221–232. DOI: 10.1520/JTE100180.
Prakash R.V., Dhaka P., Prasad Reddy G.V., Sandhya R. Understanding the fatigue response of small Vume specimens through novel fatigue test methods – Experimental results and numerical simulation. Theor. Appl. Fract. Mech. 2019. V. 103. DOI: 10.1016/j.tafmec.2019.102304.
Moerman K.M., Fereidoonnezhad B., McGarry J.P. Novel hyperelastic models for large Vumetric deformations. Int. J. Solids Struct. 2020. V. 193–194. P. 474–491. DOI: 10.1016/j.ijsolstr.2020.01.019.
Huang L., Zhong J., Chen G., Xu T., Guan K. Method-ology to evaluate strength properties of steel by single instrumented indentation test. J. Strain Anal. Eng. Des. 2021. V. 56. N 6. P. 404–416. DOI: 10.1177/03093247211014761.
Kim S.H., Lee B.W., Choi Y., Kwon D. Quantitative determination of contact depth during spherical indentation of metallic materials - A FEM study. Mater. Sci. Eng. A. 2006. V. 415. N 1–2. P. 59–65. DOI: 10.1016/j.msea.2005.08.217.
Li B., Zhang S., Li J., Wang J., Lu S. Quantitative evaluation of mechanical properties of machined surface layer using automated ball indentation technique. Mater. Sci. Eng. A. 2020. V. 773. DOI: 10.1016/j.msea.2019.138717.
Lee J.H., Kim T., Lee H. A study on robust indentation techniques to evaluate elasticplastic properties of metals. Int. J. Solids Struct. 2010. V. 47. N 5. P. 647–664. DOI: 10.1016/j.ijsolstr.2009.11.003.
Ullner C., Subaric-Leitis A., Bartholmai M. Uncertainty of elastoplastic material parameters calculated from the spherical indentation in the macro range. J. Test. Eval. 2021. V. 49. N 6. DOI: 10.1520/JTE20200683.
Barbadikar D.R., Ballal A.R., Peshwe D.R., Ganeshkumar J., Laha K., Mathew M.D. A study on the effect of tempering temperature on tensile properties of P92 steel by automated ball indentation technique. Proc. Eng. 2014. V. 86. P. 910–918. DOI: 10.1016/j.proeng.2014.11.113.
Kumar J.G., Vijayanand V.D., Nandagopal M., Laha K. Evaluation of variation of tensile strength across 316LN stainless steel weld joint using automated ball indentation technique. Mater. High Temp. 2015. V. 32. N 6. P. 619–626. DOI: 10.1179/1878641315Y.0000000008.
Wesemann C., Spies B.C., Schaefer D., Adali U., Beuer F., Pieralli S. Accuracy and its impact on fit of injection molded, milled and additively manufactured occlusal splints. J. Mech. Behav. Biomed. Mater. 2021. V. 114. DOI: 10.1016/j.jmbbm.2020.104179.
Gladkikh E.V., Kravchuk K.S., Useinov A.S., Nikitin A.A., Rogozhkin S.V. Comparison of Hardening Effects of Eurofer97 and ODS Eurofer Steels Under Ion Irradiation. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 12. P. 57–62. DOI: 10.6060/ivkkt.20206312.2y.
Reinhart W.D., Asay J.R., Alexander C.S., Chhabildas L.C., Jensen J.B. Flow Strength of 6061-T6 Aluminum in the Solid, Mixed Phase, Liquid Regions. J. Dyn. Behav. Mater. 2015. V. 1. N 3. P. 275–289. DOI: 10.1007/s40870-015-0030-6.