ISOPROPANOL IS AN EFFECTIVE COMPLEXING AGENT FOR CYCLODEХTRIN BIOTECHNOLOGY

  • Polina Yu. Milman Ufa Institute of Biology of Ufa Federal Research Center of the RAS
  • Elena A. Gilvanova Ufa Institute of Biology of Ufa Federal Research Center of the RAS
Keywords: cyclodextrin, cyclodextringlucanotransferase, complexing agent, solvent, isopropyl alcohol, isopropanol

Abstract

Isopropanol has been proposed as a complexing agent for the biotechnology of cyclodextrins. It has been shown that this solvent has a universal affinity for the alpha- (α-), beta- (β-) and gamma- (γ-) homologues of CD, which leads to an increase in the yields of all cyclic forms equally. The investigated complexant showed a positive effect independent of the specificity of cyclizing enzymes in the process of starch transformation. The choice of the main enzyme (CGTase) of the bacterium Paenibacillus ehimensis IB-739 is associated with its kinetic characteristic to form CD homologues, having a stable α:β:γ ratio independent of the substrate concentration (32.7:50.3: 17.0%) at the exit of the conversion process. The mixture of cyclodextrins obtained with the participation of this enzyme, consisting of three forms, is especially in demand in processes where it is required to obtain a complex with substances whose composition is not homogeneous. The synergistic effect of the solvent (5%vol.) and the enzyme CGTase of the bacterium P. ehimensis IB-739 ensured the transformation of 10% potato starch with a CD yield of up to 77%. The complexing agent has a number of technical, economic and environmental advantages. Firstly, low toxicity, which makes it possible to avoid the difficulties of further deep purification of CD from trace amounts of solvent (no more than 1-3 ppm). Secondly, good solubility in water, which reduces energy consumption for stirring the reaction medium. Third, the presence of isopropanol in the reaction mixture softens the requirements for aseptic process. Fourth, the low cost and the availability of the complexant, the production of which in Russia exceeds 30 thousand tons per year. Fifth, the boiling point of the isopropanol: water azeotropic mixture is 80.4 °C, which leads to a fairly low cost of solvent regeneration.

References

Szejtli J. Past, present, and future of cyclodextrin research. ChemInform. 2004. V. 36. N 17. P. 1825-1845. DOI: 10.1002/chin.200517261.

Zhang J.Q., Jiang K.M., An K., Ren S.H., Xie X.G., Jin Y. Novel water-soluble fisetin/cyclodextrins inclusion complexes: Preparation, characterization, molecular docking and bioavailability. Carboh. Res. 2015. V. 418. P. 20-28. DOI: 10.1016/j.carres.2015.09.013.

Jansook P., Ogawa N., Loftsson T. Cyclodextrins: Structure, physicochemical properties and pharmaceutical applications. Int. J. Pharm. 2018. V. 535. P. 272-284. DOI: 10.1016/j.ijpharm.2017.11.018.

Martin Del Valle E. Cyclodextrins and their uses: a review. Process. Biochem. 2009. V. 39. P. 1033-1046. DOI: 10.1016/S0032-9592(03)00258-9.

Tahir M.N., Lee Y. Immobilisation of beta-cyclodextrin on glass: characterisation and application for cholesterol reduction from milk. Food Chem. 2013. V. 139. P. 475-481. DOI: 10.1016/j.foodchem.2013.01.080.

Li Q., Pu H.Y., Tang P.X., Tang B., Sun Q.M., Li H. Propyl gallate/cyclodextrinsupramolecular complexes with enhanced solubility and radical scavenging capacity. Food Chem. 2018. V. 245. P. 1062-1069. DOI: 10.1016/j.foodchem.2017.11.065.

Yoshikiyo K., Yoshioka Y., Narumiya Y., Oe S., Kawahara H., Kurata K. Thermal stability and bioavaila-bility of inclusion complexes of perilla oil with γ-cyclodextrin. Food Chem. 2019. V. 294. P. 56-59. DOI: 10.1016/j.foodchem.2019.04.093.

Erdős M., Hartkamp R., Vlugt T.J.H., Moultos O.A. Inclusion complexation of organic micropollutants with β‑cyclodextrin. J. Phys. Chem. B. 2020. V. 124. P. 1218-1228. DOI: 10.1021/acs.jpcb.9b10122.

Gaston J.A.R., Szerman N., Costa H., Krymkiewicz N., Ferrarotti S. Cyclodextringlycosyltransferase from Bacillus circulans DF 9R: activity and kinetic studies. Enzyme Microb. Technol. 2009. V. 45. P. 36-41. DOI: 10.1016/j.enzmictec.2009.04.002.

Wang L., Wu D., Chen J., Wu J. Enhanced production of γ-cyclodextrin by optimization of reaction of γ-cyclodextringlycosyltransferase as well as synchronous use of isoamylase. Food Chem. 2013. V. 141. N 3. P. 3072-3076. DOI: 10.1016/j.foodchem.2013.05.149.

Blackwood A.D., Bucke C. Addition of polar organic solvents canim prove the product selectivity of cyclodextringlycosyltransferase. Solvent effects on CGTase. Enzyme Microb. Technol. 2000. V. 27. P. 704-708. DOI: 10.1016/S0141-0229(00)00270-2.

Biwer A., Antranikian G., Heinzle E. Enzymatic production of cyclodextrins. Appl. Microbiol. Biotechnol. 2002. V. 59. P. 609-617. DOI: 10.1007/s00253-002-1057-x.

Zhekova B., Dobrev G., Stanchev V., Pishtiyski I. Approaches for yield increase of β-cyclodextrin formed by cyclodextringlucanotransferase from Bacillus megateri-um. World J. Microbiol. Biotechnol. 2009. V. 25. P. 1043-1049. DOI: 10.1007/s11274-009-9985-6.

Shewale B.D., Sapkal N.P., Raut N.A., Gaikwad N.J., Fursule R.A. Effect of hydroxylpropyl-beta-cyclodextrin on solubility of Carvedilol. Indian J. Pharm. Sci. 2008. V. 70. P. 255-257. DOI: 10.4103/0250-474X.41470.

Ol’khovich M.V., Sharapova A.V., Blokhina S.V., Trostin A.N. Study of inclusion complexes of 2-hydroxypropyl-β-cyclodextrin with biologically active salinazide and vanillin isoniazide. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.] 2017. V. 60. N 4. P. 68-74 (in Russian). DOI: 10.6060/tcct.2017604.5570.

Usanov N.G., Gilvanova E.A., Elizariev P.A., Prutsakova E.A., Melentyev A.I. Improved method of photometric determination of cyclodextringlucanotransferase activity. Appl. Biochem. Microbiol. 2007. V. 43. N 1. P. 118-124 (in Russian). DOI: 10.1134/S000368380701019X.

Li Z., Wang M., Wang F., Gu Z., Du G., Wu J. Gamma-Cyclodextrin: a review on enzymatic production and ap-plications. Appl. Microbiol. Biotech. 2007. V. 77. P. 245-255. DOI: 10.1007/s00253-007-1166-7.

Kamaruddin K., Illias R.M., Aziz S.A., Said M., Hassan O. Effects of buffer properties on cyclodextringlucanotransferase reac-tions and cyclodextrin production from raw sago (Cycasrevoluta) starch. Biotechnol. Appl. Biochem. 2005. V. 41. P. 117-125. DOI: 10.1042/BA20040040.

Alves-Prado H.F., Carneiro A.A., Pavezzi F.C., Gomes E., Boscolo M., Franco C.M., da Silva R. Production of cyclodextrins by CGTase from Bacillus clausii using different starches as substrates. Appl. Biochem. Biotechnol. 2008. V. 146. P. 3-13. DOI: 10.1007/s12010-007-8093-z.

Fedorova P.Yu., Gilvanova E.A., Usanov N.G. Comparison of the kinetic properties of various cyclodextringlu-canotransferases. Izvestia Samar.Nauch. Tsentra. 2011. V. 13. N 5. P. 203-206 (in Russian).

Meng X.F., Gangoiti J., Kok N., Leeuwen S.S., Pijning T., Dijkhuizen L. Biochemical characterization of two GH70 family 4,6-α-glucanotransferases with distinct product specificity from Lactobacillus aviaries subsp. aviaries DSM 20655. Food Chem. 2018. V. 253. P. 236-246. DOI:10.1016/j.foodchem.2018.01.154.

Gracheva I.M., Ivanova L.A. Biotechnology of biologi-cally active substances. M.: Elevar. 2006. 453 p. (in Rus-sian)

Kaulpiboon J., Hansakul P. Comparative studies on the synthesis of cyclodextrin from two bacterial CGTases in the presence of organic solvents. Thammasat Int. J. Sc. Tech. 2007. V. 12. N 2. Р. 10-17.

Li C., You Y., Lu Z., Gu Z., Hong Y., Cheng L., Ban X., Li Z. Alcohol complexing agents influence bacterial α-cyclodextrin production. Food Sci. Technol. 2021. V. 135. Р. 2-9. DOI: 10.1016/j.lwt.2020.110031.

Published
2022-01-02
How to Cite
Milman, P. Y., & Gilvanova, E. A. (2022). ISOPROPANOL IS AN EFFECTIVE COMPLEXING AGENT FOR CYCLODEХTRIN BIOTECHNOLOGY. ChemChemTech, 65(1), 76-82. https://doi.org/10.6060/ivkkt.20226501.6424
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)