SYNTHESIS, COORDINATION AND ACID-BASE PROPERTIES OF MESO-DINITROSUBSTITUTED DERIVATIVES OF 5,15-DIPHENYL-β-OCTAALKYLPORPHINE

  • Svetlana G. Pukhovskaya Ivanovo State University of Chemistry and Technology
  • Yulia B. Ivanova G.A. Krestov Institute of Solution Chemistry of the RAS
  • Dmitry A. Erzunov Ivanovo State University of Chemistry and Technology
  • Aleksander S. Semeykin Ivanovo State University of Chemistry and Technology
  • Sergei A. Syrbu G.A. Krestov Institute of Solution Chemistry of the RAS
Keywords: metal porphyrins, substituents, acid-base properties, coordination properties

Abstract

Presented work shows results of synthesis and spectrophotometric researches on properties of meso-dinitrosubstituted derivatives of 5,15-diphenyl-β-octaalkylporphyrin nitroderivatives in comparison with 2,8,12,18,3,7,13,17-octaethylporphyrin and 2,3,7,8,12,13,17,18-octaethyl-5,15-dinitroporphyrin. The method of spectrophotometric titration with perchloric acid (for determining the basicity constant) and 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) was used in order to study the acid-base properties of porphyrins, namely to determine the acidity constant. The spectral characteristics of the ionized forms of 5,15-dinitro-10,20-diphenyl-3,7,13,17-tetramethyl-2,8,12,18-tetraethylporfin-F (I) and 5,15-dinitro-10,20-bis(4-nitrophenyl)-2,8,12,18-tetramethyl-3,7,13,17-tetraethylporphyrin (II) and the corresponding total constants of the acidic (pKa (I) = 6.00 and pKa (II) = 5.27) and the basic (pKb (I) = 19.78 and pKb (II) = 19.83) ionization were provided. The reaction of complexation of porphyrins with zinc acetate was studied by spectrophotometric method in pure acetonitrile and in mixed AN + DBU solvent. The influence of the degree of deformation of the tetrapyrrole macroring, the electronic effects of substituents and the acidity of the medium on the coordination and acid-base properties of porphyrins was analyzed. It was shown that the reactions of formation of metalloporphyrins with anionic porphyrin forms proceed with much higher rates compared to molecular ones, that is accompanied with a decrease in the energy parameters of the reaction. This is evidently due to the absence of energy costs for the deformation and cleaving N-H bonds of the reaction center, as well as the stronger polarization of the molecule, and as a consequence, the higher degree of solvation of anionic forms of porphyrins in the transition state. Thus, the determination of the conditions for the existence of dianionic forms of porphyrins gives grounds for the development of new sensor systems for the recognition and determination of the concentration of metal cations in liquid media due to a sharp increase in the rate of formation of metalloporphyrins in the presence of an organic base.

Forcitation:

Pukhovskaya S.G., Ivanova Yu.B., Erzunov D.A., Semeykin A.S., Syrbu S.A. Synthesis, coordination and acid-base properties of meso-dinitrosubstituted derivatives of 5,15-diphenyl-β-octaalkylporphine. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 6. P. 17-28

References

Berezin B.D. Coordination compounds of porphyrins and phthalocyanines. New York: John Wiley & Sons. 1981. 323 p.

Buchler J.W. Synthesis and properties of metalloporphyrins. In: Dolphin D, editor. Porphyrins. Vol. 1. New York: Academic Press. 1978. P. 389–483. doi:10.1016/B978-0-12-220101-1.50017-2.

Tarasevich M.R, Radyushkina M.R. Catalysis and electrocatalysis with metalloporphyrins. M.: Mir. 1982. 168 p. (in Russian).

Hambright P. Chemistry of water soluble porphyrins. Porphyrin Handbook. New York: Acad. Press. 2000. 129 p.

Gurinovich G.P., Sevchenko A.N., Solovyov K.N. Spectroscopy of chlorophyll and related compounds. Springfield, Virginia: Nat. Tech. Informat. Serv. US Dept. of Commerce. 197. 506 p.

Syrbu S.A., Ageeva T.A., Kolodina E.A., Semeykin A.S., Koifman O.I. Strategies for the synthesis of porphyrin monomers. J. Porph. Phthal. 2006. V. 10. N 4-6. P. 885. DOI: 10.1142/S1088424606000235.

Dao Tkhe Nam, Pukhovskaya S.G., Ivanova Y.B., Glazunov V.G., Semeikin A.S. Effect of basicity of the ligands on the kinetics of the reaction of complex conformity to 5,10,15,20-tetra (trifluoromethyl)porphin and 5,10,15,20-tetra(isobutyl)porphin with copper acetate. Izv. Vyssh. Uchebn. Zaved. Khim. Khim Tekhol. 2016. V. 59. N 4. P. 34-40 (in Russian).

Dao Tkhe Nam, Ivanova Yu.B., Puhovskaya S.G., Kruk M.M., Syrbu S.A. Acid-base Equilibria and coordination Chemis-try of the 5,10,15,20-tetraalkyl-porphyrins: Implications for Metalloporphyrin Synthesis and sensor design. J. RSC Advances. 2015. V. 33. N 5. P. 26125-26131. DOI: 10.1039/c5ra01323b.

Pukhovskaya S., Ivanova Yu., Dao The Nama, Vashurin A., Golubchikov O. Coordination and acid-base properties of meso-nitro derivatives of β-octaethyl-porphyrin. J. Porph. Phthal. 2015. V. 19. P. 858–864. DOI: 10.1142/S1088424615500649.

Pukhovskaya S.G., Efimovich V.A., Semeikin A.S., Golubchikov O.A. Kinetics of the Formation of Copper -Octaphenylporphyrin Complexes in Pyridine and Acetic Acid. Russ. J. Inorg. Chem. 2010. V. 55. N 9. P. 1494-1500. DOI: 10.1134/S0036023610090275.

Pukhovskaya S.G., Ivanova Yu.B., Dao The Nam, Vashurin A.S. Acid-base equilibria of the solutions of meso–nitroamine derivatives of β-oktaetilporfina. Zhurn. Fizich. Khim. 2014. V. 88. N 10. P.1485-1491 (in Russian). DOI: 10.7868/S004445371410032X.

Golubchikov O.A., Pukhovskaya S.G., Kuvshinova E.M. Structures and properties of spatially distorted porphyrins. Russ. Chem. Rev. 2005. V. 74. N 3. P. 249 - 270. DOI: 10.1070/RC2005v074n03ABEH000925.

Kuvshinova E.M., Semeikin A.S., Kolodina E.A., Syrbu S.A., Golubchikov O.A. Synthesis, physicochemical and coordina-tion properties of 5,15-diphenyltetramethyltetraethylporphyn nitro derivatives. Russ. J. Gen. Chem. 2012. V. 82. N 3. P. 488-493. DOI: 10.1134/S1070363212030218.

Berezin D.B., Maltseva O.V. Effect of the type of molecular nonplanar structure on the chemical reactivity of NH bonds in the coordination center of porphyrin molecule. Russ. J. Gen. Chem. 2009. V. 79. N 4. P. 845-851. DOI: 10.1134/S1070363209040276.

Kuvshinova E.M., Pukhovskaya S.G., Kuzmin D.L., Semeikin A.S., Golubchikov O.A. Structure of Phenyl Derivatives of Octaethylporphyrin and Dissociation Kinetics of Their Mn3+, Co2+, and Cu2+ Complexes in Acetic Acid. Russ. J. Gen. Chem. 2003. V. 73. N 4. P. 652-654. (in Russian). DOI: 10.1023/A:1025673427341.

Sheinin V.B., Shabunin S.A., Bobritskaya E.V., Ageeva T.A., Koifman O.I. Protonation Equilibriums of Porphin, 5,10,15,20-Tetraphenylporphin, 5,10,15,20-Tetrakis(4-sulfo-natophenyl)porphin in Methanol. Macroheterocycles. 2012. V. 5. N 3. P. 252 - 259. DOI: 10.6060/mhc2012.120989s.

Andrianov V.G., Malkova O.V. Acid-Base Properties of Porphyrins in Nonaqueous Solutions. Macroheterocycles. 2009. V. 2. N 2. P. 130-138 (in Russian).

Kolodina E.A., Syrbu S.A., Semeikin A.S., Koifman O.I. Phenyl-substituted porphyrins. III. Relative reactivity in the nitration reaction. Rus. J. Org. Chem. 2010. V. 46. N 1. P. 138–143. DOI: 10.1134/S107042801001015X.

Syrbu S.A., Lyubimova T.V., Semeikin A.S. Steric and electronic effects of substituents on the yield of 5,15-substituted oc-taalkylporphines. Rus. J. Gen. Chem. 2001. V. 71. N 10. P. 1656-1659. DOI: 10.1023/A:1013936027631.

Syrbu S.A., Lyubimova T.V., Semeikin A.S. Phenyl-substituted porphyrins. 1. Synthesis of meso-phenylsubstituted porphy-rins. Chem. Heterocycl. Comp. 2004. V. 40. N 10. P. 1262-1270. DOI: 10.1007/s10593-005-0050-6.

Kaljurand A., Kütt L., Sooväli T., Rodima V., Mäemets I., Leito I., Koppel A. Extension of the Self-Consistent Spectropho-tometric Basicity Scale in Acetonitrile to a Full Span of 28 pKa Units: Unification of Different Basicity Scales. Org. Chem. 2005. V. 70. N 3. Р. 1019. DOI: 10.1021/jo048252w.

Ivanova Yu.B., Sheinin V.B., Mamardashvili N.Zh. Porphyrin halide ion receptor. Rus. J. Gen. Chem. 2007. V. 77. P. 1458-1462. DOI: 10.1134/S1070363207080270.

Ivanova Yu.B., Churakhina Y.I., Mamardashvili N.Zh. Synthesis and basic properties of bisporphyrinocalix[4]-arene. Rus. J. Gen. Chem. 2008. V. 78. N 4. P. 673–677. DOI: 10.1134/S1070363208040269.

Ivanova Yu.B., Pukhovskaya S.G., Semeikin A.S., Syrbu S.A. Study of acidity and coordination properties of 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraphenylporphyrin in the system of 1,8-diaza-bicyclo[5.4.0]undec-7-ene-acetonitrile. Rus. J. Gen. Chem. 2013. V. 83. N 7. P. 1406–1409. DOI: 10.1134/S1070363213070177.

Pukhovskaya S.G, Efimovich V.A., Golubchikov O.A. Effect of Structural and Electronic Properties of Substituents on the Metal Porphyrin Formation Kinetics. Rus. J. Inorg. Chem. 2013. V. 58. N 4. P. 406 – 410. DOI: 10.1134/S0036023613040141.

Berezin D.B., Ivanova Yu.B., Sheinin V.B. The Acid Properties of Dodecasubstituted Porphyrins with a Chemically Active NH Bond. Rus. J. Phys. Chem. A. 2007. V. 81. N 12. P. 1986 - 1991. DOI: 10.1134/S003602440712014X.

Pukhovskaya S.G., Guseva L.Z., Malkova O.V., Semeikin A.S., Golubchikov O.A. Acid-Base Properties of sterically strained tetra-ethyltetramethylporphyrin derivatives. Rus. J. Gen. Chem. 2003. V. 73. N 3. P. 473-477. DOI: 10.1023/A:1024930608567.

Bernshteyn I.Ya. Spektrofotometricheskiy analiz v organicheskoy himii. L.: Khimiya. 1986. 202 p. (in Russian).

Meyer Jr. E.F. The crystal and molecular structure of nickel(II)octaethylporphyrin. Acta Crystallogr. 1972. B. 28. P. 2162 – 2167. DOI: 10.1107/S0567740872005722.

Gullen D.L., Meyer Jr. E.F. Crystal and molecular structure of the triclinic form of 1,2,3,4,5,6,7,7-octaethylporphinatonickel(II). Comparison with the tetragonal form. J. Am. Chem. Soc. 1974. V. 96. N 7. P. 2095 – 2102. DOI: 10.1021/ja00814a018.

Słota R., Broda M. A., Dyrda G., Ejsmont K., Mele G. Structural and Molecular Characterization of meso-Substituted Zinc Porphyrins: A DFT Supported Study. Molecules. 2011. V. 16. N 12. P. 9957–9971. DOI: 10.3390/molecules16129957.

Published
2018-06-06
How to Cite
Pukhovskaya, S. G., Ivanova, Y. B., Erzunov, D. A., Semeykin, A. S., & Syrbu, S. A. (2018). SYNTHESIS, COORDINATION AND ACID-BASE PROPERTIES OF MESO-DINITROSUBSTITUTED DERIVATIVES OF 5,15-DIPHENYL-β-OCTAALKYLPORPHINE. ChemChemTech, 61(6), 17-28. https://doi.org/10.6060/tcct.20186106.5655
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)

Most read articles by the same author(s)