MICROPARTICLES OF POLYELECTROLYTE COMPLEXES BASED ON POLY-N,N-DIALLYL-N,N-DIMETHYLAMMONIUM CHLORIDE AND OXIDIZED ARABINOGALACTAN MODIFIED WITH HISTIDINE
Abstract
Complexation of poly-N,N-diallyl-N,N-dimethylammonium chloride and carboxylated arabinogalactan with histidine has been studied by a complex of a number of physicochemical methods (UV-, IR-, 1H NMR-, 13C NMR-spectroscopy and pH-metry). When the functional groups of polymers interact with the amino acid, complexes of the composition 1:1 for arabinogalactan and 2:1 for poly-N,N-diallyl-N,N-dimethylammonium chloride are formed. The stability constants and thermodynamic characteristics of the complexation process have been calculated. It was shown by IR spectroscopy that the carboxyl groups of the polyanion interact with the amino groups and the nitrogen atom of the imidazole ring of the amino acid. The interaction with the polycation involves the carboxyl groups of histidine. The formation of microparticles of polyelectrolyte complexes based on poly-N,N-diallyl-N,N-dimethylammonium chloride and carboxylated arabinogalactan, as well as complexes based on polyelectrolytes modified by histidine, has been studied by turbidimetric titration and laser light scattering methods. The lyophilizing ability of polyelectrolytes and, accordingly, the size of microparticles depends on the number of ionogenic groups in polymers. It is shown that chemical modification of polyelectrolytes, leading to a decrease in the content of ionogenic groups in macromolecules, leads to an increase in the size of microparticles of polyelectrolyte complexes. The conditions for obtaining complex systems have been optimized from the point of view of aggregate stability and particle size. It was found that there is a linear relationship between the ratio of the complex components and the average particle size - the particle size increases with an increase in the molar ratio (p-anion / p-cation) of polyelectrolytes in the complex. It has been shown that precipitates of polyelectrolyte complexes isolated from aqueous dispersions are well preserved in the form of dry powders, and upon dispersion in water they give microparticles with sizes comparable to those of the initial complexes. Similarly, the problem of long-term storage of physiologically active microparticles can be solved.
References
Izumrudov V.A., Mussabayeva B.K., Kassymova Z.S., Klivenko A.N., Orazzhanova L.K. Interpolyelectrolyte complexes advances and prospects of application. Usp. Khim. 2019. V. 88. N 10. P. 1046-1062 (in Russian). DOI: 10.1070/RCR4877.
Pavlov G.M., Okatova O.V., Gavrilova I.I., Ul'Yanova N.N., Panarin E.F. Sizes and conformations of hydro-philic ad hydrophobic polyelectrolytes in solutions of various ionic strengths. Polym. Science. A. 2013. V. 55. N 12. P. 699-705. DOI: 10.7868/S0507547513120088.
Machinskaya A.E., Vasilevskaya V.V. The formation of interpolymer complexes in mixtures of weak polyelectrolytes. Polym. Sci. A. 2016. V. 58. N 4. P. 606-612. DOI: 10.7868/S230811201604009X.
Palamarchuk I.A., Brovko O.S., Bogolitsyn K.G., Boitsova T.A., Ladesov A.V., Ivakhnov A.D. Relationship of the structure and ion exchange properties of polyelectrolyte complexes based on biopolymers. Russ. J. Appl. Chem. 2015. V. 88. N 1. P. 103-109. DOI: 10.1134/S1070427215010152.
Odintsova O.I. Syntetic polyelectrolytes and peculiarities of their interaction with surfactans. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2009. V. 52. N 8. P. 3–9 (in Russian).
Gorshkova M.Yu., Volkova I.F. Grigoryan E.S. Polyelectrolyte complexes of polysaccharides: preparation and properties. Izv. Ufim. Nauch. Tsentra RAN. 2018. V. 3. N 3. P. 54–59 (in Russian). DOI: 10.31040/2222-8349-2018-3-3-54-59.
Izumrudov V.A. Soluble polyelectrolyte complexes of biopolymers. Polym. Sci. A. 2012. V. 54. N 7. P. 513-520. DOI: 10.1134/S0965545X12010117.
Zhiryakova M.V., Izumrudov V.A. Controlled stability of a polymer-colloid complex in aqueous-saline solu-tions. Polym. Sci. A. 2008. V. 50. N 10. P. 1057-1064. DOI: 10.1134/S0965545X08100064.
Shilova S.V., Mirgaleev G.M., Tret’yakova A.Y., Barabanov V.P. Polyelectrolyte complexes of chitosan with soium carboxymethyl cellulose in water-alcohol media and microcapsules based on them. Polym. Sci. A. 2020. V. 62. N 6. P. 630-635. DOI: 10.31857/S2308112020050156.
Petrova V.A., Orekhov A.S., Chernyakov D.D., Baklagina Y.G., Romanov D.P., Kononova S.V., Volod’ko A.V., Ermak I.M., Klechkovskaya V.V., Skorik Y.A. Preparation and analysis of multilayer composites based on polyelectrolyte complexes. Crystal. Rep. 2016. V. 61. N 6. P. 945-953. DOI: 10.1134/S1063774516060110.
Sabitha P., Vijaya Ratna J., Ravindra Reddy K. Desing and evalution of controlled release chitosan-calcium-alginate microcapsules of antitubercular drugs for oral use. Int. J. Chem. Technol. Res. 2010. V. 2. N 1. P. 88-98.
Mussabayeva B.H., Murzagulova K.B., Kim M.E., Izumrudov V.A., Aripzhanova Z.Zh. Encapsulation of antitubercular drugs by biopolymers and polyelectrolyte multilayers. Farm. Farmakol. 2017. V. 5. N 2. P. 164-176 (in Russian) DOI: 10.19163/2307-9266-2017-5-2-164-176.
Devi M.G., Dutta S., Al Hinai A.T., Feroz S. Studies on encapsulation of Rifampicin and its release from chi-tosan-dextran sulfate capsules. Korean J. Chem. Eng. 2015. V. 32. N 1. P. 118-124. DOI: 10.1007/s11814-014-0161-9.
Chernyakov D.D., Petrova V.A., Baklagina Yu.G., Gofman I.V., Skorik Y.A. Comparative analysis of struc-ture and properties of multilayer composites of chitosan and anionic polysaccharides. Izv. Ufim. Nauch. Tsentra RAN. 2016. N 3-1. P. 99-102 (in Russian).
Rafiee A., Alimohammadian M.H., Gazori T., Riazi-rad F., Fatemi S.M.R., Parizadeh A., Haririan I., Havaskary M. Comparison of chitosan, alginate and chitosan/alginate nanoparticles with respect to their size, stability, toxicity and transfection. Asian Pacific J. Tropical Disease. 2014. V. 4. N 5. P. 372-377. DOI: 10.1016/S2222-1808(14)60590-9.
Nishiyama N., Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Therapeut. 2006. V. 112. P. 630-648. DOI: 10.1016/j.pharmthera.2006.05.006.
Nakanishi T., Fukushima S., Okamoto K., Suzuki M., Matsumura Y., Yokoyama M., Okano T., Sakurai Y., Kataoka K. Development of the polymer micelle carrier system for doxorubicin. J. Control. Release. 2001. V. 74. P. 295-302. DOI: 10.1016/S0168-3659(01)00341-8.
Rijcken C.J.F., Soga O., Hennink W.E., van Nostrum C.F. Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: an attractive tool for drug delivery. J. Control. Release. 2007. V. 120. N 3. P. 131-148. DOI: 10.1016/j.jconrel.2007.03.023.
Babaev M.S., Vorobe’va A.I., Chernysheva Y.S., Zakir'yanova O.V., Spirikhin L.V., Kolesov S.V. Microparticles of poly- N,N-diallyl-N,N-dimethylammonium chloride polyelectrolyte complexes as drug carries. Russ. J. Appl. Chem. 2015. V. 88. N 9. P. 1494-1499. DOI: 10.1134/S1070427215090177.
Kasaikin V.A., Litmanovich E.A., Zezin A.B., Kabanov V.A. Self-assembly of micellar phase on binding of sodi-um dodecylsulphate to poly(dimethyldiallylammonium chloride) in delute aqueous solutions. Doklady Phys. Chem. 1999. V. 367. N 1-3. P. 205-208.
Vorob’eva A.I., Sultanova G.R., Bulgakov A.K., Zainchkovskii V.I., Kolesov S.V. Synthesis and biologi-cal properties of copolymers based on N,N-diallyl-N,N-dimethylammonium chloride. Pharm. Chem. J. 2013. V. 46. N 11. P. 653-655. DOI: 10.1007/s11094-013-0863-z.
Vlasov P.S., Chernyi S.N., Domnina N.S. Functionalyzed polyampholytes on the basis of copolymers of N,N-diallyl-N,N-dimethylammonium chloride and maleic acid. Russ. J. Gen. Chem. 2010. V. 80. N 7. P. 1314-1319. DOI: 10.1134/S1070363210070169.
Badykova L.A., Mudarisova R.K., Kolesov S.V. Microparticles of polyelectrolyte complexes based on poly-N,N-diallyl-N,N-dimethylammonium chloride modified with some amino acids. Russ. J. Physical Chem. B. 2020. V. 14. N 1. P. 194-197. DOI: 10.31857/S0207401X20010033
Slyusarenko N.V., Vasilyeva N.Y., Gerasimova M.A., Slyusareva E.A., Kazachenko A.S., Romanchenko A.S. Synthesis and properties of interpolymer complexes based on chitosan and sulfated arabinogalactan. Polym. Sci. B. 2020. V. 62. N 3. P. 272-278. DOI: 10.31857/S2308113920020059.
Mudarisova R.Kh, Badykova L.A. Interaction of siberian larch arabinogalactan with amino-containing compounds. Polym. Sci. A. 2012. V. 54. N 2. Р. 106–112. DOI: 10.1134/S0965545X12020083.
Badelin V.G., Tarasova G.N., Tyunina E.Yu., Bychkova S.A. Investigation of the interaction of L-histidine with heterocyclic compounds in aqueous solutions by UV spectroscopy. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2018. V. 61. N 8. P. 10-16 (in Russian). DOI: 10.6060/ivkkt.20186108.5742.
Gurina M.S., Vildanova R.R., Badykova L.A., Vlasova N.M., Kolesov S.V. Microparticles based on chitosan-hyaluronic acid interpolyelectrolyte complex which provide stability of aqueous dispersions. Russ. J. Appl. Chem. 2017. V. 90. N 2. P. 219-224. DOI: 10.1134/S1070427217020100.
Wandrey Ch., Jaeger W., Reinisch G., Hahn M., Engelhardt G., Jancke H., Ballscuh D. Zur chemishen Struktur von Poly(dimethyl-diallyl-ammoniumchlorid). Acta Polym. 1981. V. 32. N 3. P. 177-179. DOI: 10.1002/actp.1981.010320310.
Badykova L.A., Mudarisova R.Kh., Borisov I.M., Gurina M.S. Preparation of New Cefazolin-Containing Films Based on Chitosan and Carboxyarabinogalactan. Russ. J. Appl. Chem. 2016. V. 89. N 7. P. 1126−1131. DOI: 10.1134/S1070427216070120.
Bulatov M.I., Kalinkin I.P. Practical guide to photometric methods of analysis. L.: Khimiya. 1986. 386 p. (in Russian).
Bellamy L.J. Advances in Infrared Group Frequencies. М.: Mir. 1971. 318 p. (in Russian).