INFLUENCE OF A HYDROPHOBIZER ON THE PROPERTIES OF EXPERIMENTAL BENTONITE-CONTAINING BIPOLAR MEMBRANES
Abstract
Experimental samples of bipolar ion-exchange membranes were obtained by applying liquid sulfocation exchanger LF-4SK containing bentonite clays treated with stearic acid to an anion-exchange membrane-substrate with quaternary ammonium groups MA-41. The effect of the amount of added bentonite (1, 2, 3 wt%) on the characteristics of membranes was studied. Silicon and hydroxyl of the included bentonite accelerate the dissociation of water molecules, which leads to increasing the concentration of hydrogen and hydroxyl ions during bipolar electrodialysis. Surface modification of bentonite particles with stearic acid improves the dispersion of the clay in the polymer solution. The physico-mechanical characteristics of experimental ion-exchange membranes containing bentonite treated with stearic acid are compared with a membrane containing natural untreated bentonite. The total exchange capacity, density, moisture capacity, as well as tensile strength and relative elongation were determined. The injection of a hydrophobizer into the membrane leads to a decrease in moisture content, an increase in the total exchange capacity and density of the cation-exchange layer compared to a membrane containing bentonite in its original form. The conversion of sodium sulfate (concentration 0.5 mol/dm3) was carried out with experimental bipolar ion-exchange membranes. The use of a bipolar membrane containing bentonite treated with stearic acid (3%) in the cation-exchange layer leads to an increase in the productivity of the process and a decrease in energy costs compared to a commercially available heterogeneous ion-exchange membrane with similar functional groups and not containing catalytic additives. A scheme for obtaining experimental bipolar membranes is proposed, which consists of the following stages: preparation of bentonite; treatment of bentonitewith stearic acid; preparation of anion-exchange membrane-substrate MA-41; coating the membrane-substrate with of a cation-exchange layer.
For citation:
Niftaliev S.I., Kozaderova O.A., Kim K.B., Belousov P.E., Timkova A.V. Influence of a hydrophobizer on the properties of experimental bentonite-containing bipolar membranes. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 10. P. 120-127. DOI: 10.6060/ivkkt.20226510.6686.
References
Kozaderova O.A., Niftaliev S.I., Kim K.B. Application of bipolar membranes mb-2 modified by chromium (III) hydroxide for sodium sulfate conversion process. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 3. P. 30-36 (in Russian). DOI: 10.6060/ivkkt201962fp.5811.
Niftaliev S.I., Kozaderova O.A., Kim K.B. Application of Bipolar Electrodialysis with Modified Membranes for the Purification of Chromic Wastewater from Galvanic Production. Ekologiya Prom. Rossii. 2021. V. 25. N 10. P. 4-9 (in Russian). DOI: 10.18412/1816-0395-2021-10-4-9.
Eswaraswamy B., Mandal P., Goel P., Chandra A., Chattopadhyay S. Intricacies of caustic production from industrial green liquor using bipolar membrane electrodialysis. J. Environ. Chem. Eng. 2022. V. 10. N 3. P. 107628–107839. DOI: 10.1016/j.jece.2022.107628.
Sun Y., Wang Y., Peng Z., Liu Y. Treatment of high salinity sulfanilic acid wastewater by bipolar membrane electrodialysis. Separat. Purificat. Technol. 2022. V. 281. N 15. P. 119842. DOI: 10.1016/j.seppur.2021.119842.
Xia C., Xinyu R., Kentish S., Li G., Tongwen X., George C. Production of Lithium Hydroxide by Electrodialysis with Bipolar Membranes. Separat. Purificat. Technol. 2021. V. 274. P. 119026. DOI: 10.1016/j.seppur.2021.119026.
Shel'deshov N.V., ZabolockiyV.I., Ganych V.V. The effect of insoluble metal hydroxides on the rate of water dissociation reaction on the cation-exchange membrane. El-ektrokhimiya. 1994. V. 30. N 12. P. 1458–1461 (in Russian).
Mel'nikov S.S., Shapovalova O.V., Shel'deshov N.V., Zabolotskiy V.I. The influence of hydroxides of d-metals on the dissociation of water in bipolar membranes. Mem-brany Membrane. Tekhnol. 2011. V. 1. N 2. P. 149-156 (in Russian).
Shel'deshov N.V., Zabolotskiy V.I., Alpatova N.V. The influence of heavy metal hydroxides on the dissociation of water in a bipolar membrane. Nauch. Zhurn. KubGAU. 2015. V. 114. N 10. P. 1-13 (in Russian).
Xue Y.H., Fu R.Q., Fu Y. Xun, Xu T.W. Fundamental studies on the intermediate layer of a bipolar membrane. V. Effect of silver halide and its dope in gelatin on water dissociation at the interface of a bipolar membrane. J. Colloid Interface Sci. 2006. V. 298. P. 313-320. DOI: 10.1016/j.jcis.2005.11.049.
Simons R. Water splitting in ion exchange membranes. Electrochim. Acta. 1985. V. 30. N 3. P. 275-282. DOI: 10.1016/0013-4686(85)80184-5.
Peng F., Peng Sh., Huang Ch, Xu T. Modifying bipolar membranes with palygorskite and FeCl3. J. Membrane Sci. 2008. V. 322. P. 122–127. DOI: 10.1016/j.memsci.2008.05.027.
Liu Y., Chen J., Chen R., Zhou T., Ke C., Chen X. Effects of multi-walled carbon nanotubes on bipolar membrane properties. Mater. Chem. Phys. 2018. V. 203. P. 259-265. DOI: 10.1016/j.matchemphys.2017.09.068.
Martínez R.J., Farrell J. Water splitting activity of oxygen-containing groups in graphene oxide catalyst in bipolar membranes. Comput. Theor. Chem. 2019. V. 1164. P. 112556. DOI: 10.1016/j.comptc.2019.112556.
Manohar M., Das A.K., Shahi V.K. Efficient bipolar membrane with functionalized graphene oxide interfacial layer for water splitting and converting salt into acid/base by electrodialysis. Ind. Eng. Chem. Res. 2018. V. 57. P. 1129-1136. DOI: 10.1021/acs.iecr.7b03885.
Kozaderova O.A. Electrochemical characterization of an MB-2 bipolar membrane modified by nanosized chromium(III) hydroxide. Nanotechnol. Russia. 2018. V. 13. P. 508-515. DOI: 10.1134/S1995078018050075.
Kang M. S., Choi Y., Lee H., Moon S. Effects of inorganic substances on water splitting in ion-exchange membranes; I. Electrochemical characteristics of ion-exchange membranes coated with iron hydroxide/oxide and silica sol. J. Colloid Interface Sci. 2003. V. 273. N 2. P. 523-532. DOI: 10.1016/j.jcis.2004.01.050.
Kang M. S., Choi Y., Moon S. Effects of inorganic substances on water splitting in ion-exchange membranes. II. Optimal contents of inorganic substances in preparing bipolar membranes. J. Colloid Interface Sci. 2004. V. 273. P. 533–539. DOI: 10.1016/j.jcis.2004.01.051.
Abd El-Hakim A.A., Badran A.S., Essawy H.A. The Effect of Surface Treatment of Bentonite on the Mechanical Properties of Polypropylene–Bentonite Composites. Polymer-Plastics Technol. Eng. 2004. V. 43. P. 555-569. DOI: 10.1081/PPT-120029980.
Othman N., Ismail H., Mariatti M. Effect of compatibilisers on mechanical and thermal properties of bentonite filled polypropylene composites. Polym. Degrad. Stabil. 2006. V. 91. N 8. P. 1761-1774. DOI: 10.1016/J.POLYMDEGRADSTAB.2005.11.022.
Mihajlović Slavica R., Vučinić Dušica R., Sekulić Živko T., Milićević Sonja Z., Kolonja Božo M. Mechanism of stearic acid adsorption to calcite. Powder Technol. 2013. V. 245. P. 208-216. DOI: 10.1016/j.powtec.2013.04.041.
Patti A., Hubert L., Anatoli S., Domenico A., Cassagnau P. The universal usefulness of stearic acid as surface modifier: applications to the polymer formulations and composite processing. J. Indust. Eng. Chem. 2021. V. 96. DOI: 10.1016/j.jiec.2021.01.024.
Rothon R.N. Particulate fillers for polymers. Rapra Tech-nology Ltd. 2008. 560 p.
Gonzalez L., Lozano-Ramirez T., Morales-Cepeda A.B. Mechanical and Thermal Properties of Polypropylene/ Montmorillonite Nanocomposites Using Stearic Acid as Both an Interface and a Clay Surface Modifier. Polym. Compos. 2014. V. 35 (1). DOI: 10.1002/pc.22627.
Morales-Cepeda A.B., Lozano-Ramirez T., Navarro-Pardo F., Lafleur P.G. Mechanical and rheological proper-ties of polypropylene/bentonite composites with stearic acid as an interface modifier. J. Appl. Polym. Sci. 2015. V. 132. DOI: 10.1002/app.42264.
Peregudov Yu.S., Niftaliev S.I., Korchagin V.I., Lygina L.V., Bogunov S.I., Malyavina Yu.M. Enthalpy of interac-tion of hydrophobic chalk with water. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2012. V. 55. N 5. P. 42-44 (in Russian).
Gou J., Zhang L., Li C. A new method combining modification of montmorillonite and crystal regulation to enhance the mechanical properties of polypropylene. Polymer Testing. 2020. V. 82. P. 106236. DOI: 10.1016/j.polymertesting.2019.106236.
Demirbas A., Sari A., Isildak O. Adsorption thermodynamics of stearic acid onto bentonite. J. Hazard. Mat. 2006. V. 135. P. 226-331. DOI: 10.1016/j.jhazmat.2005.11.056.
Hernandez Y., Lozano T., Morales A. B, Navarro-Pardo F., Lafleur P.G., Sanchez-Valdes S., Martinez-Colunga G., Morales-Zamudio L., Lira-Gomez P. Improvement of toughness properties of polypropylene filled with nanoben-tonite using stearic acid as interface modifier. J. Compos. Mater. 2016. V. 51 (3). P. 373 – 380. DOI: 10.1177/0021998316644852.
Nguyen T.T., Nguyen V.K., Pham T.T.H., Pham T.T., Nguyen T.D. Effects of Surface Modification with Stearic Acid on the Dispersion of Some Inorganic Fillers in PE Matrix. J. Compos. Sci. 2021. V. 5. N 270. DOI: 10.3390/jcs5100270.
Eteläaho P., Haveri S., Järvelä P. Comparison of the morphology and mechanical properties of unmodified and surface-modified nanosized calcium carbonate in a polypropylene matrix. Polym. Compos. 2011. V. 32. P. 464-471. DOI: 10.1002/pc.21065.
Kononenko N.A., Demina O.A., Loza N.V. Membrane electrochemistry. Krasnodar: Izd. Kuban. gos. univ. 2017. 290 p. (in Russian).
АО «МЕGА», http://www.mpline.ru/oborudovanie/mem-brany (in Russian).