UTILIZATION OF FIBERGLASS BASED ON PHENOL-FORMALDEHYDE RESIN
Abstract
Utilization of composite materials based on thermosetting binders is one of the main aspects of the production and operation of products from them. There are many methods, but the main attention of researchers is directed to the separation of the polymer matrix and fibrous filler. The paper presents the results of a study on assessing the possibility of recycling products made of fiberglass based on a thermosetting binder type AG-4V, consisting mainly of phenol-formaldehyde resin, by mechanical processing: crushing, grinding, abrasion. A microstructural analysis of the obtained regenerates was carried out, and their heterogeneity scale was determined. After mechanical action, there are signs of chemical reactions on the surface of powders obtained as a result of grinding and abrasion, which is confirmed by the results of differential scanning calorimetry. It has been established that mechanically activated powders are capable to exothermic transformations in the temperature range of 150-200 °C, corresponding to the curing region of the phenol-formaldehyde resin. An increase in endothermic effects was also noted in the temperature range corresponding to the softening of phenol-formaldehyde resins. A possible mechanism of structure formation of fibrous thermosets based on recycled raw materials by the type of chemical welding is described. An assessment of the strength of molded glass-reinforced plastics based on regenerated raw materials was carried out. The principal possibility of reusing the products of secondary processing of thermoplastics as an independent feedstock is shown. It has been established that the introduction of 7% auxiliary phenol-formaldehyde binder makes it possible to increase the strength of the material by 1.76 times, and an increase in pressure to 100 MPa - by 1.5 times. It is shown that the strength of glass-reinforced plastics based on recycled raw materials corresponds to the strength of thermoplastics based on industrially used materials of the AG-4V type.
For citation:
Ivshin S.S., Ivshina A.A., Fedorov A.V., Zaripova D.N. Utilization of fiberglass based on phenol-formaldehyde resin. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 9. P. 104-109. DOI: 10.6060/ivkkt.20236609.6707.
References
Petrov A.V., Doriomedov M.S., Skripachev S.Yu. // Tr. VIAM. 2015. N 8. P. 60-71 (in Russian). DOI: 10.18577/2307-6046-2015-0-8-9-9.
Petrov A.V., Doriomedov M.S., Skripachev S.Yu. // Tr. VIAM. 2015. N 12. P. 98-104 (in Russian). DOI: 10.18577/2307-6046-2015-0-12-12-12.
Yongxiang Yang, Rob Boom, Brijan Irion, Derk-Jan Heerden, Pieter Kuiper, Hans Wit. // Chem. Eng. Proc.: Proc. Intens. 2012. V. 51. P. 53–68. DOI: 10.1016/j.cep.2011.09.007.
Peng Hao Wang, Natalie Zimmermann. // JOJ Material Sci. 2020. 6(1). 555679. DOI: 10.19080/JOJMS.2020.06.555679.
Gusev E.V., Naboyshchikova N.A., Ageeva T.A. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 6. P. 58-63 (in Russian). DOI: 10.6060/ivkkt.20226506. 6553.
Job S. // Reinforced Plastics. 2014. V. 58. N 5. Pt. 1. P. 32–34. DOI: 10.1016/S0034-3617(14)70213-9.
Job S. // Reinforced Plastics. 2014. V. 58. N 5. Pt. 2. P. 36–38. DOI: 10.1016/S0034-3617(14)70213-9.
Meyer L.O., Schulte K., Grove-Nielsen E. // J. Comp. Mater. 2009. V. 43. P. 1121–1132. DOI: 10.1177/0021998308097737.
Pinero-Hernanz R., Dodds C., Hyde J. // Composites: Pt. A. 2008. V. 39. P. 454–461. DOI: 10.1016/j.compositesa.2008.01.001.
Okajima I. // J. Adv. Res. Phys. 2012. V. 3. N 2. P. 1–4.
Pico D., Seide G., Gries T. // Chem. Eng. Transact. 2014. V. 36. P. 211–216.
Torlova A.S., Vitkalova I.A., Pikalov E.S. // Nauch. Obozr. Tekhn. Nauki. 2017. N 2. P. 96-114 (in Russian).
Vitkalova I.A., Torlova A.S., Pikalov E.S. // Nauch. Obozr. Tekhn. Nauki. 2017. N 2. P. 15-28 (in Russian).
Zastrogina O.B., Sinyakov S.D., Serkova E.A. // Tr. VIAM. 2021. N 10 (104). P. 58-66 (in Russian). DOI: 10.18577/2307-6046-2021-0-10-58-66.
Zastrogina O.B., Sinyakov S.D., Serkova E.A. // Tr. VIAM. 2021. N 11 (105). P. 55-65 (in Russian). DOI: 10.18577/2307-6046-2021-0-11-55-65.
Sabadakha E.N., Prokonchuk N.R., Shutova A.L., Groba A.I. // Tr. Belorus. Gos. Tekhnol. Un-ta. 2017. N 2. Ser. 2. P. 108-115 (in Belarus).
Howarth J., Sada S.R., Mativenga P.T. // J. Cleaner Prod. 2014. V. 81. P. 46–50. DOI: 10.1016/j.jclepro.2014.06.023.
Palmer J., Ghita O.R., Savage L., Evans K.E. // Composites: Pt. A. 2009. V. 40. P. 490–498. DOI: 10.1016/j.compositesa.2009.02.002.
Keiji Ogi, Takashi Nishikawa, Yasutaka Okano, Ichiro Taketa. // Adv. Comp. Mater. 2007. V. 16. N 2. P. 181–194. DOI: 10.1163/156855107780918982.
Conroy A., Halliwell S., Reynolds T. // Composites. Pt. A. 2006. V. 37. P. 1216–1222. DOI: 10.1016/j.compositesa.2005.05.031.
Burdikova T.V. Adhesion strength of composite materials: study guide. Kazan: KNRTU. 2018. 148 p. (in Rus-sian).