STUDY OF METAL SORPTION BY COVALENTLY IMMOBILIZED POLYAMPHOLYTES BASED ON AMINO ACIDS

  • Gulnora A. Umirova Termez State University
  • Khayit Kh. Turaev Termez State University
  • Kirill N. Kornilov Moscow State University of Food Production
  • Nilufar A. Ermuratova Termez Institute of Engineering and Technology
Keywords: polyampholytes, IR spectroscopy, elemental analysis, structure, static exchange capacity, complex formation, sorbent

Abstract

In the presented article, the sorption properties were studied for the first time of polyampholyte, obtained by polycondensation - covalent fixation of ortho-aminobenzoic acid on a matrix of epoxy resin "epoxymol" and polyethylene polyamine. In particular, this polymer was complexed with copper, nickel, zinc, cobalt, and silver ions. The structure of both the resulting polyampholyte itself and its metal complexes with the indicated metals (d-elements) was determined by IR spectroscopy. For the first time, the IR spectra of ligand-polyampholyte complexes with copper, nickel, zinc, cobalt, and silver ions were recorded and studied. These spectra are compared with the spectra of the polyampholyte itself. Scanning electron microscopy (SEM) (photography, elemental analysis) was used to study the microscopic structure of the O-ABA:ED-20:PEPA ligand (ortho-aminobenzoic acid, epoxy resin, polyethylenepolyamine) and its coordination compound with copper ions Cu2+. According to the results of elemental analysis, the gross formulas of the obtained polyampholyte coordination compounds with all coordinated (adsorbed) metals are given. According to the experimental data, obtained as a result of studying the thermal stability of polyampholyte, it was shown that the sorbent is stable up to a temperature of 200 °C. The resulting sorbent is recommended for practical use in the sorption of some d-metal ions from solutions. The dependence of the sorption of some d-metals on the pH of the medium was also studied, and were constructed graphs that describe the dependence of the sorption of metals on pH in the synthesized complexing ligand, showing that the sorption of ions is higher in slightly acidic media.

For citation:

Umirova G.A., Turaev Kh.Kh., Kornilov K.N., Ermuratova N.A. Study of metal sorption by covalently immobilized polyampholytes based on amino acids. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 5. P. 41-51. DOI: 10.6060/ivkkt.20236605.6728.

References

Beaugeard V. Acidic polymeric sorbents for the removal of metallic pollution in water: a review. React. Funct. Polym. 2020. P. 104599. DOI: 10.1016/j.reactfunctpolym.2020.104599.

Ismoilova Kh.M., Bekchanov D.Zh., Khasanov Sh.B., Matmuradova F.K. Sorption of Zn(II) and Cr(III) ions on anion exchangers and polyampholytes obtained from local raw materials. Universum: Khim. Biol: Elektron. Nauchn. Zhurn. 2019. 12(66). P. 37-45 (in Russian).

Umirova G.A., Kasimov Sh.A., Turaev Kh.Kh., Dzhalilov A.T. IR spectroscopic and thermal characteristics of a nitrogen-containing ligand and its coordination compounds with copper (II). ISJTAS. 2021. V. 101. N 09. P. 49-51. DOI: 10.15863/TAS.2021.09.101.55.

Umirova G.A., Kasimov Sh.A., Turaev Kh.Kh., Dzhalilov A.T. Sorption of Cu (II) and Zn (II) ions on poly-ampholytes obtained from amino acids. Universum: Khim. Biol.: Elektron. Nauchn. Zhurn. 2021. N 10(88). P. 19-22 (in Russian). DOI: 10.32743/UniChem.2021.88.

Ivanchenko A., Yelatontsev L., Soroka O., Tkachenko E. Outlook of using the adsorption method for extraction of metals from hydrous effluent. Graal Nayki. 2021. N 8. P. 149-152 (in Russian). DOI: 10.36074/grail-of-science.24.09.2021.29.

Barakat M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011. 4. P. 361–377. DOI: 10.1016/j.arabjc.2010.07.019.

Ihsanullah A., Abbas A.M., Al-Amer T., Laoui M.J., Al-Marri M.S., Nasser M., Khraisheh M.A., Atieh. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep. Purif. Technol. 2016. 157. P. 141–161. DOI: 10.1016/j.seppur.2015.11.039.

Bilal M. Recent advances in applications of low-cost adsor-bents for the removal of heavy metals from water: A critical review. Sep. Purif. Technol. 2022. V. 278. P. 1-10. DOI: 10.1016/j.seppur.2021.119510.

Lam B., Deґon S., Morin-Crini N., Crini G., Fievet P. Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances. J. Clean. Prod. 2018. 171. P. 927–933. DOI: 10.1016/j.jclepro.2017.10.090.

Sun Y., Zhou S., Pan S.Y., Zhu S., Yu Y., Zheng H. Performance evaluation and optimization of flocculation pro-cess for removing heavy metal. Chem. Eng. J. 2020. 385. P. 123911. DOI: 10.1016/j.cej.2019.123911.

Demirbas A. Heavy metal adsorption onto agro-based waste materials: a review. J. Hazard. Mater. 2008. 157. P. 220–229. DOI: 10.1016/j. jhazmat.2008.01.024.

SenthilKumar P., Ramalingam S., Sathyaselvabala V., Kirupha S.D., Sivanesan S. Removal of copper(II) ions from aqueous solution by adsorption using cashew nut shell. Desalination. 2011. 266. P. 63–71. DOI: 10.1016/j.desal.2010.08.003.

Agarwal M., Singh K. Heavy metal removal from wastewater using various adsorbents: a review. J. Water Re-use Desalin. 2017. 7. P. 387–419. DOI: 10.2166/wrd.2016.104.

Dąbrowski A., Hubicki Z., Podkoґscielny P., Robens E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere. 2004. 56. P. 91–106. DOI: 10.1016/j. chemo-sphere.2004.03.006.

Abdullah N., Yusof N., Lau W.J., Jaafar J., Ismail A.F. Recent trends of heavy metal removal from water/wastewater by membrane technologies. J. Ind. Eng. Chem. 2019. 76. P. 17–38. DOI: 10.1016/j.jiec.2019.03.029.

Maher A., Sadeghi M., Moheb A. Heavy metal elimination from drinking water using nano filtration membrane technology and process optimization using response surface meth-odology. Desalination. 2014. 352. P. 166–173. DOI: 10.1016/j.desal.2014.08.023.

Foo K.Y., Hameed B.H. An overview of landfill leachate treatment via activated carbon adsorption process. J. Hazard. Mater. 2009. P. 54-60. DOI: 10.1016/j.jhazmat. 2009.06.038.

Nouri L., Ghodbane I., Hamdaoui O., Chiha M. Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran. J. Hazard. Mater. 2007. 149. P. 115–125. DOI: 10.1016/j.jhazmat.2007.03.055.

Keno David Kowanga, Erastus Gatebe, Godfrey Omare Mauti, Eliakim Mbaka Mauti Kinetic. Sorption iso-therms,pseudo-first-order model and pseudo-second-order model studies of Cu(II) and Pb(II) using defatted Moringaoleifera seed powder. J. Phytopharmacol. 2016. 5(2). Р. 71-78. DOI: 10.31254/phyto.2016.5206.

Dąbrowski A., Hubicki Z., Podkoґscielny P., Robens E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere. 2004. 56. P. 91–106. DOI: 10.1016/j.chemosphere.2004.03.006.

Jachuła J., Kołodyńska D., Hubicki Z. Sorption of Cu(II) and Ni(II) ions in the presence of the methylglycinediacetic acid by microporous ion exchangers and sorbents from aqueous solutions. Cent. Eur. J. Chem. 2011. V. 9. N 1. P. 52-65. DOI: 10.2478/s11532-010-0115-y.

Kasimov Sh.A., Turaev Kh.Kh., Jalilov A.T. Study of the process of complex formation of ions of some divalent 3d-metals with a synthesized chelating sorbent. Universum: Khim. Biolog.: Elektron. Nauchn. Zhurn. 2018. N 3 (45). P. 17-19 (in Russian).

Kasimov Sh.A., Turaev Kh.Kh., Jalilov A.T., Chorieva N.B., Amonova N.D. IR spectroscopic study and quantum chemical characterization of nitrogen and phosphorus-containing polymeric ligand. Universum: Khim. Biolog.: El-ektron. Nauchn. Xhurn. 2019. N 6(60). P. 50-54 (in Russian).

Berdiyeva M.I., Turobzhonov S.M., Nazirova R.A. The use of polycondensation sulfocationite in of softening industrial waters. Voda: Khim. Ekolog. 2016. N 9. P. 27-29 (in Russian).

Umirova G.A., Kasimov Sh.A., Turaev Kh.Kh., Sharipov B.Sh. Study of the physicochemical properties of the synthesized complexing anion exchange resin. ARES. 2021. N 12. P. 1372-1379 (in Russian). DOI: 10.24412/2181-1385-2021-12.

Umirova G.A., Kasimov Sh.A., Turaev Kh.Kh., Jalilov A.T. Synthesis and study of chelating sorbents based on amino acids. Uzbek. Khim. Zhurn. 2021. N 5. P. 11-17 (in Russian).

Ermuratova N.A., Turaev Kh.Kh., Kornilov K.N., Roeva N.N. Synthesis and study of a complexing sorbent, based on urea, formaldehyde and aminoacetic acid, using IR spectroscopy and scanning electron microscope. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 9. P. 31-38 (in Russian). DOI: 10.6060/ivkkt.20226509.6626.

Kasimov Sh.A., Turayev Kh.Kh., Dzhalilov A.T. Investigation of the process of complex formation of ions of some divalent 3d-metals synthesized by a chelating sorbent. Universum: Khim. Biolog.: Elektron. Nauchn. Zhurn. 2018. N 3 (45). P. 17-19 (in Russian).

Ermuratova N.A., Kasimov Sh.A., Turayev K.K. Synthesis and study of a chelating sorbent based on urea, formalde-hyde and 2-aminopentanedioic acid. Universum: Tekhnich. Nauki: Elektron. Nauchn. Zhurn. 2021. N 4(85). P. 71-73 (in Russian). DOI: 10.32743/UniTech.2021.85.4-4.71-73.

Chorieva N., Ermuratova N., Turaev Kh., Kasimov Sh. Synthesis and research of chelate forming sorbent based on carbamide, formaldehyde, ditizone. Chem. Chem. Eng. 2021. N 4. Р. 19-23. DOI: 10.51348/RWHC65864.

Eshkurbonov F.B., Turayev K.K., Ermuratova N.A. Study of the ion-exchange capacity of whey and nitrogen-containing anion exchanger by the titrimetric method of anal-ysis. Universum: Tekhnich. Nauki. 2019. N 4 (61). P. 49-51 (in Russian).

Nelms S. E., Galloway T. S., Godley B. J., Jarvis D. S., Lindeque P.K. Investigating microplastic trophic transfer in marine top predators. Environ. Pollut. 2018. 238. P. 999–1007. DOI: 10.1016/j.envpol.2018.02.016.

Kornilov K.N. Polymeric derivatives of phosphorus-organic acid amides and dihydric phenols: little studied substances with great prospects. Phosphorus, Sulfur, Silicon Relat. Ele-ments. 2021. V. 196. N 7. Р. 605-615. DOI: 10.1080/10426507.2021.1901705.

Turaev Kh.Kh., Shukurov D.Kh., Djalilov A.T., Kari-mov M.U. New Review of Dye Sensitive Solar Cells. Int. J. Eng. Trends Technol. 2021. 69(9). P. 265-271. DOI: 10.14445/22315381/Ijett-V69i9p232.

Shukurov D., Turaev Kh., Jovliyev P., Karimov M.U. Synthesis of Polyaniline Dye Pigment and Its, Study in Dye-Sensitive Solar Cells. Int. J. Eng. Trends Technol. 2022. 70(4). P. 236-244. DOI: 10.14445/22315381/IJETT-V70I4P220.

Published
2023-03-23
How to Cite
Umirova, G. A., Turaev, K. K., Kornilov, K. N., & Ermuratova, N. A. (2023). STUDY OF METAL SORPTION BY COVALENTLY IMMOBILIZED POLYAMPHOLYTES BASED ON AMINO ACIDS. ChemChemTech, 66(5), 41-51. https://doi.org/10.6060/ivkkt.20236605.6728
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)