DEACTIVATION BEHAVIOUR OF BIFUNCTIONAL COBALT FISHER–TROPSCH CATALYST IN LONG-RUN TEST

  • Andrei S. Gorshkov Technological Institute for Superhard and Novel Carbon Materials
  • Liliya V. Sineva Technological Institute for Superhard and Novel Carbon Materials
  • Kirill O. Gryaznov Technological Institute for Superhard and Novel Carbon Materials
  • Eduard B. Mitberg Technological Institute for Superhard and Novel Carbon Materials
  • Vladimir Z. Mordkovich Technological Institute for Superhard and Novel Carbon Materials
Keywords: Fischer–Tropsch synthesis, cobalt catalyst, bifunctional catalyst, pelletized catalyst, zeolite, fixed bed, deactivation

Abstract

In this work, several ways to decrease the deactivation degree were proposed. To prevent local overheating, exfoliated graphite was used as a heat-conductive additive in catalyst composition. To decrease the deposition of heavy waxes, H-Beta zeolite was used for secondary reactions intensification and decreasing hydrocarbons chain length in the product. In this work, pelletized zeolite-containing cobalt catalyst with exfoliated graphite as a heat-conductive additive was investigated. The test run was 2200 h long and included continuous synthesis in a 6-meter high pilot reactor. The deactivation degree after 2200 h of the test run was 13%. The investigation of catalyst samples after synthesis by means of scanning electron microscopy showed that heavy hydrocarbons did not block the pore structure of catalytic pellets. Deactivation of cobalt catalyst was decelerated seriously due to zeolite-induced decrease in molecular weight of formed hydrocarbons. Investigation of catalysts before and after the test by means of transmission electron microscopy and X-ray diffraction analysis showed an increase in the size of clusters by 3–5 times, which is another important cause for catalyst deactivation. As a result, it was found that investigated cobalt catalyst for Fisher–Tropsch synthesis has a low deactivation rate. Its implementation in the industry can help gaining better economic performance for the synthetic fuel production process.

For citation:

Gorshkov A.S., Sineva L.V., Gryaznov K.O., Mitberg E.B., Mordkovich V.Z. Deactivation behaviour of bifunctional cobalt fisher–tropsch catalyst in long-run test. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 11. P. 65-70. DOI: 10.6060/ivkkt.20226511.2y.

References

Lancelot C., Ordomsky V.V., Stéphan O., Sadeqzadeh M., Karaca H., Lacroix M., Curulla-Ferré D., Luck F., Fongarland P., Griboval-Constant A., Khodakov A.Y. Direct Evidence of Surface Oxidation of Cobalt Nanoparticles in Alumina-Supported Catalysts for Fischer–Tropsch Synthe-sis. ACS Catal. 2014. V. 4. N 12. P. 4510-4515. DOI: 10.1021/cs500981p.

Okoye-Chine C.G., Moyo M., Liu X., Hildebrandt D. A critical review of the impact of water on cobalt-based catalysts in Fischer-Tropsch synthesis. Fuel Process. Technol. 2019. V. 192. P. 105–129. DOI: 10.1016/j.fuproc.2019.04.006.

Saib A.M., Moodley D.J., Ciobîca˘ I.M., Haumana M.M., Sigwebela B.H., Weststrate C.J., Niemantsverdriet J.W., van de Loosdrecht J. Fundamental understanding of deactivation and regeneration of cobalt Fischer–Tropsch synthesis catalysts. Catal. Today. 2010. V. 154. P. 271–282. DOI: 10.1016/j.cattod.2010.02.008.

Lin Q., Liu B., Jiang F., Fang X., Xu Y., Liu X. Assessing the formation of cobalt carbide and its catalytic performance under realistic reaction conditions and tuning product selectivi-ty in a cobalt-based FTS reaction. Catal. Sci. Technol. 2019. V. 9. P. 3238–3258. DOI: 10.1039/C9CY00328B.

Hazemann P., Decottignies D., Maury S., Humbert S., Meunier F.C., Schuurman Y. Selectivity loss in Fischer-Tropsch synthesis: The effect of cobalt carbide formation. J. Catal. 2021. V. 397. P. 1–12. DOI: 10.1016/j.jcat.2021.03.005.

van Ravenhorst I.K., Hoffman A.S., Vogt C., Boubnov A., Patra N., Oord R., Akatay C., Meirer F., Bare S.R., Weckhuysen B.M. On the Cobalt Carbide Formation in a Co/TiO2 Fischer−Tropsch Synthesis Catalyst as Studied by High-Pressure, Long-Term Operando X‑ray Absorption and Diffraction. ACS Catal. 2021. V. 11. P. 2956−2967. DOI: 10.1021/acscatal.0c04695.

Carvalho A., Ordomsky V.V., Luo Y., Marinova M., Muniz A.R., Marcilio N.R., Khodakov A.Y. Elucidation of deactivation phenomena in cobalt catalyst for Fischer-Tropsch synthesis using SSITKA. J. Catal. 2016. V. 344. P. 669–679. DOI: 10.1016/j.jcat.2016.11.001.

Moodley D., Claeys M., van Steen E., van Helden P., Kistamurthy D., Weststrate K.-J., Niemantsverdriet H., Saib A., Erasmus W., van de Loosdrecht J. Sintering of cobalt during FTS: Insights from industrial and model systems. Catal. Today. 2020. V. 342. P. 59-70. DOI: 10.1016/j.cattod.2019.03.059.

Tucker C.L., Claeys M., van Steen E. Decoupling the deactivation mechanisms of a cobalt Fischer-Tropsch catalyst operated at high conversion and ‘simulated’ high conversion. Catal. Sci. Technol. 2020. V. 10. P. 7056–7066. DOI: 10.1039/d0cy00929f.

Wolf M., Gibson E.K., Olivier E.J., Neethling J.H., Catlow C.R.A., Fischer N., Claeys M. Indepth characterisation of metal-support compounds in spent Co/SiO2 Fischer-Tropsch model catalysts. Catal. Today. 2020. V. 342. P. 71-78. DOI: 10.1016/j.cattod.2019.01.065.

Moodley D.J., van de Loosdrecht J., Saib A.M., Overett M.J., Datye A.K., Niemantsverdriet J.W. Carbon deposi-tion as a deactivation mechanism of cobalt-based Fischer–Tropsch synthesis catalysts under realistic conditions. Appl. Catal., A. 2009. V. 354. P. 102–110. DOI: 10.1016/j.apcata.2008.11.015.

Pour A.N., Taheri S.A., Anahid S., Hatami B., Tavasoli A. Deactivation studies of Co/CNTs catalyst in Fischer–Tropsch synthesis. J. Nat. Gas Sci. Eng. 2014. V. 18. P. 104-111. DOI: 10.1016/j.jngse.2014.01.019.

Savost’yanov A.P., Eliseev O.L., Yakovenko R.E., Narochniy G.B., Maslakov K.I., Zubkov I., Soromotin V.N., Kozakov A.T., Nicolskii A.V., Mitchenko S.A. Deactivation of Co‑Al2O3/SiO2 Fischer–Trospch Synthesis Cata-lyst in Industrially Relevant Conditions. Catal Lett. 2020. V. 150. P. 1932–1941. DOI: 10.1007/s10562-020-03097-z.

Rößler S., Kern C., Jess A. Accumulation of liquid hydro-carbons during cobalt-catalyzed Fischer–Tropsch synthesis - influence of activity and chain growth probability. Catal. Sci. Technol. 2019. V. 9. P. 4047-4054. DOI: 10.1039/c9cy00671k.

Asalieva E. Sineva L. Sinichkina S., Solomonik I., Grya-znov K., Pushina E., Kulchakovskaya E., Kulnitskiy B., Ovsyannikov D., Mordkovich V. Exfoliated graphite as a heat-conductive frame for a new pelletized Fischer–Tropsch synthesis catalyst. Appl. Catal. A. 2020. V. 601. P. 117639. DOI: 10.1016/j.apcata.2020.117639.

Ermolaev V., Gryaznov K., Mitberg E., Mordkovich V., Tretyakov V. Laboratory and pilot plant fixed-bed reactors for Fischer-Tropsch synthesis: mathematical modeling and experimental investigation. Chem. Eng. Sci. 2015. V. 138. P. 1–8. DOI: 10.1016/j.ces.2015.07.036.

Gorshkov A.S., Ermolaev I.S., Gryaznov K.O., Mitberg E.B., Sineva L.V., Solomonik I.G., Mordkovich V.Z. Ex-perimental Study of Fischer–Tropsch Synthesis Using Nitrogen-Containing Synthesis Gas at Different Pressures of Synthesis. Catal. Ind. 2021. V. 13. N 1. P. 48–57. DOI: 10.1134/S2070050421010037.

Bartholomew C.H., Rahmati M., Reynolds M.A. Optimizing preparations of Co Fischer-Tropsch catalysts for stability against sintering. Appl. Catal. A. 2020. V. 602. P. 117609. DOI: 10.1016/j.apcata.2020.117609.

Chernyak S., Burtsev A., Maksimov S., Kupreenko S., Maslakov K., Savilov S. Structural evolution, stability, deactivation and regeneration of Fischer-Tropsch cobalt-based catalysts supported on carbon nanotubes. Appl. Catal. A. V. 603. P. 117741. DOI: 10.1016/j.apcata.2020.117741.

Asalieva E.Yu., Sineva L.V., Zhukova E.A., Mordkovich V.Z., Bulycheva B.M. Phase composition, physicochemical and catalytic properties of cobalt–aluminum–zeolite systems. Russ. Chem. Bull. Int. Ed. 2015. V. 64. N 10. P. 2371–2376. DOI: 10.1007/s11172-015-1165-2.

Solomonik I.G., Gryaznov K.O., Mitberg E.B., Mordkovich V.Z. Skeletal cobalt for hydrocarbon synthesis by Fischer-Tropsch method. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 12. P. 71-76. DOI: 10.6060/ivkkt.20206312.11у.

Published
2022-10-20
How to Cite
Gorshkov, A. S., Sineva, L. V., Gryaznov, K. O., Mitberg, E. B., & Mordkovich, V. Z. (2022). DEACTIVATION BEHAVIOUR OF BIFUNCTIONAL COBALT FISHER–TROPSCH CATALYST IN LONG-RUN TEST. ChemChemTech, 65(11), 65-70. https://doi.org/10.6060/ivkkt.20226511.2y
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)

Most read articles by the same author(s)

1 2 > >>