MODERN METHODOLOGY OF THE SAMPLE PREPARATION IN PESTICIDES RESIDUES DETERMINATION IN ENVIRONMENTAL BODIES, BIOLOGICAL MATRICES, AND FOOD

Keywords: pesticides, sample preparation, environmental bodies, biological matrices, food

Abstract

An overview of modern methods for samples preparation of environmental bodies (water, soil), biological matrices (urine, hair, blood, animal tissues), food and plant and animal food raw materials for various classes of pesticides residues determination is presented. Differences in the physico-chemical properties of the pesticide preparations active substances complicate their simultaneous extraction from the analyzed objects and determination. Sample preparation for the determination of pesticides includes homogenization (in the case of solid and heterogeneous samples), extraction of analytes and purification of the extract. In some cases, it is necessary to add water or, conversely, dehydration. In determination of pesticides trace amounts in water, biological fluids and animal products, additional concentration of extracts may be required. Classical liquid extraction, historically one of the first methods for pesticide extraction, has a variety of disadvantages: labor intensity and duration, high values and high toxicity of most organic solvents. Ionic liquids, deep eutectic and supramolecular solvents are safer and at the same time quite effective. For the purification of extracts, QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) first presented in 2002 in Rome at the European Seminar on Pesticide Residues, is most often used, as well as its modern modifications. Besides that, dispersive solid-phase and dispersive liquid-liquid microextraction are successfully used. The combination of dispersive solid-phase and liquid-liquid microextraction is the most perspective and meets the requirements of the "green chemistry" concept as much as possible.

For citation:

Lavrukhina O.I., Amelin V.G., Kish L.K., Tretyakov A.V. Modern methodology of the sample preparation in pesticides residues determination in environmental bodies, biological matrices, and food. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 12. P. 6-24. DOI: 10.6060/ivkkt.20236612.6799.

Author Biographies

Olga I. Lavrukhina, All-Russian State Center for Quality and Standardization of Medicines for Animals and Feed

PhD (Chemistry), Leading researcher, Scientific Planning and Research Department; Associate professor, Chemistry department

Vasiliy G. Amelin, All-Russian State Center for Quality and Standardization of Medicines for Animals and Feed

Doctor Full (Chemistry), Professor, Chief researcher, Scientific Planning and Research Department

Leonid K. Kish, All-Russian State Center for Quality and Standardization of Medicines for Animals and Feed

PhD (Veterinary), Director

Aleksey V. Tretyakov, All-Russian State Center for Quality and Standardization of Medicines for Animals and Feed

PhD (Chemistry), Associate professor, Deputy director

References

Zanella R., Prestes O.D., Bernardi G., Adaime M.B. Chap. 5 – Advanced Sample Preparation Techniques for Pesticide Residues Determination by HRMS Analysis. In: Applications in High Resolution Mass Spectrometry. Ed. by.: R. Romero-González, A.G. Frenich. Elsevier. 2017. P. 131-164. DOI: 10.1016/B978-0-12-809464-8.00005-1.

Leong W.-H., Teh S.-Y., Hossain M.M., Nadarajaw T., Zabidi-Hussin Z., Chin S.-Y., Lai K.-S., Lim S.-H.E. // J. Environ. Manag. 2020. V. 260. 109987. DOI: 10.1016/j.jenvman.2019.109987.

Moldoveanu S., David V. Chap. 2 – The role of sample preparation. In: Modern Sample Preparation for Chromatog-raphy. Ed. by S. Moldoveanu, V. David. Elsevier. 2021. P. 51-77. DOI: 10.1016/B978-0-12-821405-3.00006-X.

Cunha S.C., Fernandes J.O. Chap. 21 – Application in Food Analysis. In: Handbooks in Separation Science, Liq-uid-Phase Extraction. Ed. by C.F. Poole. Elsevier. 2020. P. 643-665. DOI: 10.1016/B978-0-12-816911-7.00021-9.

Stone J. Chap. 3 – Sample preparation techniques for mass spectrometry in the clinical laboratory. In: Mass Spectrometry for the Clinical Laboratory. Ed. by H. Nair, W. Clarke. Academic Press. 2017. P. 37-62. DOI: 10.1016/B978-0-12-800871-3.00003-1.

Watanabe E. // J. Chromatogr. A. 2021. V. 1643. 462042. DOI: 10.1016/j.chroma.2021.462042.

Jamil L.A., Sami H.Z., Aghaei A., Moinfar S., Ataei S. // Microchem. J. 2021. V. 160. 105692. DOI: 10.1016/j.microc.2020.105692.

Madej K., Kalenik T.K., Piekoszewski W. // Food Chem. 2018. V. 269. P. 527-54. DOI: 10.1016/j.foodchem.2018. 07.007.

Delińska K., Yavir K., Kloskowski A. // TrAC, Trends Anal. Chem. 2021. V. 143. 116396. DOI: 10.1016/j.trac. 2021.116396.

Cacho J.I., Campillo N., Viñas P., Hernández-Córdoba M. // J. Chromatogr. A. 2018. V. 1559. P. 95-101. DOI: 10.1016/j.chroma.2017.12.059.

Ravelo-Pérez L.M., Hernández-Borges J., Asensio-Ramos M., Rodríguez-Delgado M.Á. // J. Chromatogr. A. 2009. V. 1216. N 43. P. 7336-7345. DOI: 10.1016/j.chroma. 2009.08.012.

He L., Luo X., Jiang X., Qu L. // J. Chromatogr. A. 2010. V. 1217. N 31. P. 5013-5020. DOI: 10.1016/j.chroma. 2010.05.057.

Zhang J., Gao H., Peng B., Li S., Zhou Z. // J. Chromatogr. A. 2011. V. 1218. N 38. P. 6621-6629. DOI: 10.1016/ j.chroma.2011.07.102.

Wang Y., You J., Ren R., Xiao Y., Gao S., Zhang H., Yu A. // J. Chromatogr. A. 2010. V. 1217. N 26. P. 4241-4246. DOI: 10.1016/j.chroma.2010.03.031.

Abolghasemi M.M., Piryaei M., Imani R.M. // Microchem. J. 2020. V. 158. 105041. DOI: 10.1016/j.microc.2020. 105041.

Nasiri M., Ahmadzadeh H., Amiri A. // TrAC, Trends Anal. Chem. 2020. V. 123. 115772. DOI: 10.1016/j.trac. 2019. 115772.

Heidari H., Ghanbari-Rad S., Habibi E. // J. Food Compost. Anal. 2020. V. 87. 103389. DOI: 10.1016/j.jfca. 2019.103389.

Li X., Wang M., Zhao J., Guo H., Gao X., Xiong Z., Zhao L. // J. Pharm. Biomed. Anal. 2019. V. 166. P. 213-221. DOI: 10.1016/j.jpba.2019.01.018.

Sereshti H., Zarei-Hosseinabadi M., Soltani S., Jamshidi F., AliAbadi M.H.S. // Microchem. J. 2021. V. 167. 106314. DOI: 10.1016/j.microc.2021.106314.

Zahiri E., Khandaghi J., Farajzadeh M.A., Mogaddam M.R.A. // J. Chromatogr. A. 2020. V. 1627. 461390. DOI: 10.1016/j.chroma.2020.461390.

Jouyban A., Farajzadeh M.A., Mogaddam M.R.A. // Talanta. 2020. V. 206. 120169. DOI: 10.1016/j.talanta.2019. 120169.

Farajzadeh M.A., Sattari Dabbagh M., Yadeghari A. // J. Sep. Sci. 2017. V. 40. P. 2253- 2260. DOI: 10.1002/ jssc.201700052.

Zhao J., Meng Z., Zhao Z., Zhao L. // Food Chem. 2020. V. 310. 125863. DOI: 10.1016/j.foodchem.2019.125863.

Jouyban A., Farajzadeh M.A., Mogaddam M.R.A. // J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2019. V. 1124. P. 114-121. DOI: 10.1016/j.jchromb.2019.06.004.

Musarurwa H., Tavengwa N.T. // Talanta. 2021. V. 223. Pt. 1. 121515. 10.1016/j.talanta.2020.121515.

ALOthman Z.A., Yilmaz E., Habila M.A., Alhenaki B., Soylak M., Badjah Hadj Ahmed A.Y., Alabdullkarem E.A. // Int. J. Environ. Anal. Chem. 2022. V. 102. N 7. P. 1491-1501. DOI: 10.1080/03067319.2020.1738419.

Seebunrueng K., Phosiri P., Apitanagotinon R., Srijaranai S. // Microchem. J. 2020. V. 152. 104418. DOI: 10.1016 /j.microc.2019.104418.

Deng H., Wang H., Liang M., Su X. // Microchem. J. 2019. V. 151. 104250. DOI: 10.1016/j.microc.2019.104250.

Scheel G.L., Tarley C.R.T. // J. Mol. Liq. 2020. V. 297. 111897. DOI: 10.1016/j.molliq.2019.111897.

Gorji S., Biparva P., Bahram M., Nematzadeh G. // Food Anal. Methods. 2019. V. 12. P. 394-408. DOI: 10.1007/ s12161-018-1371-2.

Peyrovi M., Hadjmohammadi M. // J. Iran Chem. Soc. 2017. V. 14. P. 995-1004. DOI: 10.1007/s13738-017-1049-5.

Scheel G.L., Tarley C.R.T. // Microchem. J. 2017. V. 133. P. 650-657. DOI: 10.1016/j.microc.2017.03.007.

Farajzadeh M.A., Yadeghari A., Khoshmaram L. // Microchem. J. 2017. V. 131. P. 182-191. DOI: 10.1016/j.microc.2016.12.013.

Valverde S., Ibáñez M., Bernal J.L., Nozal M.J., Her-nández F., Bernal J. // Food Chem. 2018. V. 266. P. 215-222. DOI: 10.1016/J.FOODCHEM.2018.06.004.

Naksen W., Prapamontol T., Mangklabruks A., Chantara S., Thavornyutikarn P., Robson M.G., Ryan P.B., Barr D.B., Panuwet P. // J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2016. V. 1025. P. 92-104. DOI: 10.1016/ j.jchromb.2016.04.045.

Nasiri M., Ahmadzadeh H., Amiri A. // Talanta. 2021. V. 227. 122078. DOI: 10.1016/j.talanta.2020.122078.

Demir Ö., Ulusoy H.İ., Özer E.T., Osman B. // Microchem. J. 2020. V. 158. 105317. DOI: 10.1016/j.microc.2020. 105317.

Wang X., Meng X., Wu Q., Wang C., Wang Z. // J. Chromatogr. A. 2019. V. 1600. P. 9-16. DOI: 10.1016/j.chroma. 2019.04.031.

Ma J., Wu G., Li S., Tan W., Wang X., Li J., Chen L. // J. Chromatogr. A. 2018. V. 1553. P. 57-66. DOI: 10.1016/ j.chroma.2018.04.034.

Xu Y., Li X., Zhang W., Jiang H., Pu Y., Cao J., Jiang W. // Food Chem. 2021. V. 344. 128650. DOI: 10.1016/j.foodchem.2020.128650.

Liu G., Tian M., Lu M., Shi W., Li L., Gao Y., Li T., Xu D. // J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2021. V. 1166. 122500. DOI: 10.1016/j.jchromb.2020. 122500.

Musarurwa H., Chimuka L., Tavengwa N.T. // Trends Environ. Anal. Chem. 2021. V. 32. e00141. DOI: 10.1016/ j.teac.2021.e00141.

Zhang S., Jiao Z., Yao W. // J. Chromatogr. A. 2014. V. 1371. P. 74-81. DOI: 10.1016/j.chroma.2014.10.088.

Kecili R., Hussain C.M. Chap. 4 – Mechanism of Adsorp-tion on Nanomaterials. In: Nanomaterials in Chromatography. Ed. by C.M. Hussain. Elsevier. 2018. P. 89-115. DOI: 10.1016/B978-0-12-812792-6.00004-2.

Monajemzadeh F., Mohebbi A., Farajzadeh M.A., Nemati M., Mogaddam M.R.A. // J. Food Compost. Anal. 2021. V. 96. 103696. DOI: 10.1016/j.jfca.2020.103696.

Li X., Zeng D., Liao Y., Tsunoda M., Zhang Y., Xie X., Wang R., Li L., Hu W., Deng S., Song Y. // Microchem. J. 2020. V. 159. 105350. DOI: 10.1016/j.microc.2020.105350.

Zhou P., Chen K., Gao M., J. Qu, Zhang Z., Dahlgren R.A., Li Y., Liu W., Huang H., Wang X. // Food Chem. 2018. V. 268. P. 468-475. DOI: 10.1016/j.foodchem.2018. 06.099.

Rao R.N., Albaseer S.S. Chap. 7 – Nanomaterials in Chromatographic Sample Preparations. In: Nanomaterials in Chromatography. Ed. by C.M. Hussain. Elsevier. 2018. P. 201-231. DOI: 10.1016/B978-0-12-812792-6.00007-8.

Safari M., Yamini Y., Tahmasebi E., Ebrahimpour B. // Microchim. Acta. 2016. V. 183. P. 203-210. DOI: 10.1007/ s00604-015-1607-4.

Liu Z., Qi P., Wang X.X., Wang Z., Xu X., Chen W., Wu L., Zhang H., Wang Q., Wang X.X. // Food Chem. 2017.

V. 230. P. 423-431. DOI: 10.1016/J.FOODCHEM.2017. 03.082.

Fernandes V.C., Freitas M., Pacheco J.P.G., Oliveira J.M., Domingues V.F., Delerue-Matos C. // J. Chroma-togr. A. 2018. V. 1566. P. 1-12. DOI: 10.1016/J.CHROMA. 2018.06.045.

Ma G., Zhang M., Zhu L., Chen H., Liu X., Lu C. // J. Chromatogr. A. 2018. V. 1531. P. 22-31. DOI: 10.1016/ j.chroma.2017.11.044.

Singh S., Srivastava A., Singh S.P. // Anal. Bioanal. Chem. 2018. V. 410. P. 2241-2251. DOI: 10.1007/s00216-018-0894-0.

Farajzadeh M.A., Safi R., Yadeghari A. // Microchem. J. 2019. V. 147. P. 571-581. DOI: 10.1016/j.microc.2019. 03.074.

Yadeghari A., Farajzadeh M.A. // J. Chromatogr. A. 2021. V. 1635. 461718. DOI: 10.1016/j.chroma.2020.461718.

Boulanouar S., Mezzache S., Combès A., Pichon V. // Talanta. 2018. V. 176. P. 465-478. DOI: 10.1016/j.talanta. 2017.08.067.

Singh M., Pandey A., Singh S., Singh S.P. // Chemosphere. 2021. V. 282. 131058. DOI: 10.1016/j.chemosphere.2021. 131058.

Farooq S., Wu H., Nie J., Ahmad S., Muhammad I., Zeeshan M., Khan R., Asim M. // Sci. Total Environ. 2022. V. 804. 150293. DOI: 10.1016/j.scitotenv.2021.150293.

Arias P.G., Martínez-Pérez-Cejuela H., Combès A., Pichon V., Pereira E., Herrero-Martínez J.M., Bravo M. // J. Chromatogr. A. 2020. V. 1626. 461346. DOI: 10.1016/ j.chroma.2020.461346.

Hou Y., Jiang X., Gao Y., Li Y., Huang W., Chen H., Tang X., Tsunoda M., Li J., Zhang Y., Xie X., Wang R., Hu W., Song Y., Li L. // Microchem. J. 2021. V. 166. 106232. DOI: 10.1016/j.microc.2021.106232.

Jamshidi F., Nouri N., Sereshti H., Aliabadi M.H.S. // J. Mol. Liq. 2020. V. 318. 114073. DOI: 10.1016/j.molliq.2020.114073.

He L., Cui W., Wang Y., Zhao W., Xiang G., Jiang X., Mao P., He J., Zhang S. // J. Chromatogr. A. 2017. V. 1522. P. 9-15. DOI: 10.1016/J.CHROMA.2017.09.047.

Rodríguez-González N., González-Castro M.-J., Beceiro-González E., Muniategui-Lorenzo S. // Microchem. J. 2017. V. 133. P. 137-143. DOI: 10.1016/j.microc.2017. 03.022.

Chatzimitakos T.G., Karali K.K., Stalikas C.D. // Microchem. J. 2019. V. 151. 104247. DOI: 10.1016/j.microc.2019. 104247.

Pérez-Fernández V., Rocca L.M., Tomai P., Fanali S., Gentili A. // Anal. Chim. Acta. 2017. V. 983. P. 9-41. DOI: 10.1016/j.aca.2017.06.029.

Chatzimitakos T.G., Anderson J.L., Stalikas C.D. // J. Chromatogr. A. 2018. V. 1581-1582. P. 168-172. DOI: 10.1016/j.chroma.2018.11.008.

Hu S., Zhao M., Mao Q., Fang C., Chen D., Yan P. // Food Chem. 2019. V. 299. 125146. DOI: 10.1016/j.foodchem.2019.125146.

Jiang H.-L., Li N., Cui L., Wang X., Zhao R.-S. // TrAC, Trends Anal. Chem. 2019. V. 120. 115632. DOI: 1016/ j.trac.2019.115632.

Bessonova E.A., Deev V.A., Kartsova L.A. // Zhurn. Anal. Khim. 2020. V. 75. N 8. P. 692-701 (in Russian). DOI: 10.31857/S0044450220080046.

De Andrade D.C., Monteiro S.A., Merib J. // Adv. Sample Preparation. 2022. V. 1. 100007. DOI: 10.1016/j.sampre. 2022.100007.

Dmitrienko S.G., Apyari V.V., Tolmacheva V.V., Gorbunova M.V. // Zhurn. Anal. Khim. 2020. V. 75. N 10. P. 867–884 (in Russian). DOI: 10.31857/S0044450220100059.

Deng H., Wang H., Liang M., Su X. // Microchem. J. 2019. V. 151. 104250. DOI: 10.1016/j.microc.2019.104250.

Perestrelo R., Silva P., Porto-Figueira P., Pereira J.A.M., Silva C., Medina S., Câmara J.S. // Anal. Chim. Acta. 2019. V. 1070. P. 1-28. DOI: 10.1016/j.aca.2019.02.036.

Musarurwa H., Chimuka L., Pakade V.E., Tavengwa N.T. // J. Food Compost. Anal. 2019. V. 84. 103314. DOI: 10.1016/j.jfca.2019.103314.

Anastassiades M., Lehotay S.J., Stajnbaher D., Schenck F.J. // J. AOAC Int. 2003. V. 86. P. 412-431.

Dankyi E., Carboo D., Gordon C., Fomsgaard I.S. // J. Food Compost. Anal. 2015. V. 44. P. 149–157. DOI: 10.1016/j.jfca.2015.09.002.

Tette P.A.S., da Silva Oliveira F.A., Pereira E.N.C., Silva G., de Abreu M.B. Glória, Fernandes C. // Food Chem. 2016. V. 211. P. 130–139. DOI: 10.1016/j.foodchem.2016. 05.036.

Bernardi G., Kemmerich M., Ribeiro L.C., Adaime M.B., Zanella R., Prestes O.D. // Talanta. 2016. V. 161. P. 40–47. DOI: 10.1016/j.talanta.2016.08.015.

Kaczyński N., Łozowicka B. // Food Anal. Meth. 2017. V. 10. P. 147-160. DOI: 10.1007/s12161-016-0564-9.

Da C. Cabrera L., Caldas S.S., Prestes O.D., Primel E.G., Zanella R. // J. Sep. Sci. 2016. V. 39. P. 1945-1954. DOI: 10.1002/jssc.201501204.

Martins M.L., Kemmerich M., Prestes O.D., Maldaner L., Jardim I.C.S.F., Zanella R. // J. Chromatogr. A. 2017. V. 1514. P. 36-43. DOI: 10.1016/j.chroma.2017.07.080.

Guo J., Tong M., Tang J., Bian H., Wan X., He L., Hou R. // Food Chem. 2019. V. 274. P. 452-459. DOI: 10.1016/J.FOODCHEM.2018.08.134.

Rahman M.M., Lee H.S., Abd El-Aty A.M., Kabir M.H., Chung H.S., Park J.-H., Kim M.-R., Kim J., Shin H.-C., Shin S.S., Shim J.-H. // Food Chem. 2018. V. 263. P. 59-66. DOI: 10.1016/j.foodchem.2018.04.099.

Abdel-Ghany M.F., Hussein L.A., El Azab N.F. // J. AOAC Int. 2017. V. 100. P. 176-188. DOI: 10.5740/jaoacint.16-0162.

Eyring P., Tienstra M., Mol H., Herrmann S.S., Rasmussen P.H., Frandsen H.L., Poulsen M.E. // Food Chem. 2021. V. 356. 129653. DOI: 10.1016/j.foodchem.2021. 129653.

Lavrukhina O.I., Amelin V.G., Kish L.K., Tretyakov A.V., Lavrukhin D.K. // Khim. Bezopastn.. 2022. V. 6. N 2. P. 81-16 (in Russian). DOI: 10.25514/CHS.2022.2.23006.

Adlnasab L., Ezoddin M., Shabanian M., Mahjoob B. // Microchem. J. 2019. V. 146. P. 1-11. DOI: 10.1016/j.microc.2018.12.020.

Vargas-Pérez M., Marín-Sáez J., González F.J.E., Frenich A.G. // Food Chem. 2019. V. 274. P. 429-433. DOI: 10.1016/j.foodchem.2018.08.135.

Salemi A., Khaleghifar N., Mirikaram N. // Microchem. J. 2019. V. 144. P. 215-220. DOI: 10.1016/j.microc.2018. 09.011.

Ji W.-H., Guo Y.-S., Wang X., Lu X.-F., Guo D.-S. // J. Chromatogr. A. 2019. V. 1595. P. 11-18. DOI: 10.1016/ j.chroma.2019.02.048.

Kunene P.N., Mahlambi P.N. // J. Environ. Chem. Eng. 2020. V. 8. N 2. 103665. DOI: 10.1016/j.jece.2020.103665.

Orazbayeva D., Koziel J.A., Trujillo-Rodríguez M.J., Anderson J.L., Kenessov B. // Microchem. J. 2020. V. 157. 104996. DOI: 10.1016/j.microc.2020.104996.

Bulgurcuoğlu A.E., Durak B.Y., Chormey D.S., Bakırdere S. // Microchem. J. 2021. V. 168. 106381. DOI: 10.1016/j.microc.2021.106381.

Nascimento M.M., da Rocha G.O., de Andrade J.B. // J. Chromatogr. A. 2021. V. 1639. 461781. DOI: 10.1016/ j.chroma.2020.461781.

Greer B., Chevallier O., Quinn B., Botana L.M., Elliott C.T. // TrAC, Trends Anal. Chem. 2021. V. 141. 116284. DOI: 10.1016/j.trac.2021.116284.

Yaroshenko D.V., Kartsova L.A. // Russ. J. Anal. Chem. 2014. V. 69. N 4. P. 351-358 (in Russian). DOI: 10.7868/ S0044450214040136.

Guimarães Torquetti C., Maciel d'Auriol-Souza M., Coelho André L., Bittencourt Guimarães A.T., Soto-Blanco B. // Sci. Rep. 2022. V. 12. N 1. 7164. DOI: 10.1038/s41598-022-11352-z.

López-García M., Romero-González R., Frenich A.G. // J. Pharm. Biomed. Anal. 2017. V. 137. P. 235-242. DOI: 10.1016/j.jpba.2017.01.043.

Park E., Lee J., Lee J., Lee J., Lee H.S., Shin Y., Kim J.-H. // Chemosphere. 2021. V. 277. 130215. DOI: 10.1016/j.chemosphere.2021.130215.

Iqbal S., Iqbal M.M., Javed M., Bahadur A., Yasien S., Najam-ud-din, Hurr A., Ahmad N., Raheel M., Liu G. // J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2020. V. 1152. 122227. DOI: 10.1016/j.jchromb.2020.122227.

Amelin V.G., Bol’shakov D.S., Andoralov A.M. // Zhurn. Anal. Khim. 2017. V. 72. N 2. P. 153-157 (in Russian). DOI 10.7868/S0044450216120033.

Yu C., Hao D., Chu Q., Wang T., Liu S., Lan T., Wang F., Pan C. // Food Chem. 2020. V. 321. 126657. DOI: 10.1016/j.foodchem.2020.126657.

Farajzadeh M.A., Kiavar L., Pezhhanfar S. // J. Chromatogr. A. 2021. V. 1653. 462427. DOI: 10.1016/j.chroma. 2021.462427.

Omena E., Oenning A.L., Merib J., Richter P., Rosero-Moreano M., Carasek E. // Anal. Chim. Acta. 2019. V. 1069. P. 57-65. DOI: 10.1016/j.aca.2019.04.002.

Farajzadeh M.A., Dabbagh M.S. // J. Chromatogr. A. 2020. V. 1627. 461398. DOI: 10.1016/j.chroma.2020.461398.

Kanashina D., Pochivalov A., Timofeeva I., Bulatov A. // J. Mol. Liq. 2020. V. 306. 112906. DOI: 10.1016/j.molliq.2020.112906.

Jin X., Kaw H.Y., Liu Y., Zhao J., Piao X., Jin D., He M., Yan X.-P., Zhou J.L., Li D. // Food Chem. 2022. V. 367. 130774, DOI: 10.1016/j.foodchem.2021.130774.

Hakami R.A., Aqel A., Ghfar A.A., ALOthman Z.A., Badjah-Hadj-Ahmed A.-Y. // J. Food Compost. Anal. 2021. V. 98. 103822. DOI: 10.1016/j.jfca.2021.103822.

Zeynalov E.B. Agaguseynova M.M., Salmanova N.I. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 11. P. 4–12. DOI: 10.6060/ ivkkt.20206311.6213.

Steinborn A., Alder L., Spitzke M., Dork D., Anastassiades M. // J. Agric. Food Chem. 2017. V. 65. P. 1296–1305.

Published
2023-11-08
How to Cite
Lavrukhina, O. I., Amelin, V. G., Kish, L. K., & Tretyakov, A. V. (2023). MODERN METHODOLOGY OF THE SAMPLE PREPARATION IN PESTICIDES RESIDUES DETERMINATION IN ENVIRONMENTAL BODIES, BIOLOGICAL MATRICES, AND FOOD. ChemChemTech, 66(12), 6-24. https://doi.org/10.6060/ivkkt.20236612.6799
Section
Reviews