PHASE EQUILIBRIA, SOLUBILITY AND SALTING-OUT EFFECT IN THE TERNARY SYSTEM POTASSIUM NITRATE – WATER – BUTYRIC ACID IN THE RANGE OF 5–100 °C

  • Dmitry G. Cherkasov Chernyshevsky Saratov State University
  • Madina A. Karagulova Chernyshevsky Saratov State University
  • Yulia A. Sheps Chernyshevsky Saratov State University
  • Sofya N. Balaban Chernyshevsky Saratov State University
  • Veronica V. Danilina Chernyshevsky Saratov State University
Keywords: phase equilibria, solubility, phase diagram, salting-out, monotectic state, butyric acid, potassium nitrate

Abstract

Phase equilibria, solubility and the salting-out effect of butyric acid were studied by the visual-polythermal method in mixtures of the components of the ternary system potassium nitrate – water – butyric acid in the range of 5–100 °C. Polytherms of phase states in twelve sections of the triangle composition were plotted. The following phase states were found in mixtures of components: homogeneous and saturated solutions, monotectic and delamination. The formation temperature of the critical tie line of monotectic state (18.0 °C) is determined. It is the minimum temperature of existence of two liquid phases in three-component mixtures. The temperature dependence of the compositions of solutions corresponding to the critical solubility points were found by the phase-volume ratio method. The solubility of the components was determined at thirteen temperatures and isothermal phase diagrams were plotted at 5.0, 18.0, 25.0, 50.0, 70.0 and 100.0 °C. The topological transformation of the phase diagram of a ternary system with a temperature change is characteristic of these systems with the salting-out of a binary homogeneous liquid system. The compositions of the liquid phases of monotectic state were graphically determined. The butyric acid distribution coefficient between these phases was calculated at five temperatures as the ratio of acid concentrations in the organic and aqueous phases. It was found that the effect of salting-out butyric acid increases significantly with rising temperature, which is associated with a change in the solubility of potassium nitrate in solutions. The efficiency of potassium nitrate as a salting-out agent of butyric acid from its aqueous solution is compared with the previously studied salt – water – butyric acid systems. The possibility of the successful application of potassium nitrate for the concentration of butyric acid in the biochemical method of production from fermentation solutions is noted.

For citation:

Cherkasov D.G., Karagulova M.A., Sheps Yu.A., Balaban S.N., Danilina V.V. Phase equilibria, solubility and salting-out effect in the ternary system potassium nitrate – water – butyric acid in the range of 5–100 °C. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 9. P. 36-45. DOI: 10.6060/ivkkt.20236609.6805.

References

Jha A. K., Li J., Yuan Y., Baral N., Ai B. // Int. J. Agric. Biol. 2014. V. 16. N 5. P.1019-1024.

Dwidar M., Park J.-Y., Mitchell R.J., Sang B.-I. // Sci. World J. 2012. ID 471417. P. 1-10. DOI: 10.1100/2012/471417.

Chemical Encyclopedia. Ed. by I.L. Knunyants. 1988–98. V. 1–5. M.: Sov. Entsiklopediya. (in Russian).

Jiang L., Fu H., Yang H. K., Xu W., Wang J., Yang, S.-T. // Biotechnol. Adv. 2018. V. 36. N 8. P. 2101-2117. DOI: 10.1016/j.biotechadv.2018.09.005.

Özcelik S., Kuley E., Özogul F. // LWT. 2016. V. 73. P. 536–542. DOI: 10.1016/j.lwt.2016.06.066.

Luo H., Yang R., Zhao Y., Wang Z., Liu Z., Huang M., Zeng Q. // Bioresour. Technol. 2018. V. 253. P. 343-354. DOI: 10.1016/j.biortech.2018.01.007.

Zhang C., Yang H., Yang F., Ma Y. // Curr. Microbiol. 2009. V. 59. N 6. P. 656-663. DOI: 10.1007/s00284-009-9491-y.

Suo Y., Ren M., Yang X., Liao Z., Fu H., Wang J. // Appl. Microbiol. Biotechnol. 2018. V. 102. N 10. P. 4511-4522. DOI: 10.1007/s00253-018-8954-0.

Stein U. H., Wimmer B., Ortner M., Fuchs W., Bochmann G. // Sci. Total Environ. 2017. V. 598. P. 993-1000. DOI: 10.1016/j.scitotenv.2017.04.139.

He F., Qin S., Yang Z., Bai X., Suo Y., Wang J. // Bioresour. Technol. 2020. V. 304. 122977. DOI: 10.1016/j.biortech. 2020.122977.

Załęski A., Banaszkiewicz A., Walkowiak J. // Gastroenterol. Rev. 2013. V. 6. P. 350-353. DOI: 10.5114/pg.2013.39917.

Borycka-Kiciak K., Banasiewicz T., Rydzewska G. // Gastroenterol. Rev. 2017. V. 12. N 2. P. 83-89. DOI: 10.5114/pg.2017.68342.

Shashni B., Tajika Y., Nagasaki Y. // Biomaterials. 2021. V. 275. 120877. DOI: 10.1016/j.biomaterials.2021.120877.

Fu H., Wang X., Sun Y., Yan L., Shen J., Wang J., Yang S.-T., Xiu Z. // Sep. Purif. Technol. 2017. V. 180. P. 44-50. DOI: 10.1016/j.seppur.2017.02.042.

Dan W., Hao C., Ling J., Jin C., Zhinan X., Peilin C. // Chin. J. Chem. Eng. 2010. V. 18. N 4. P. 533-537. DOI: 10.1016/S1004-9541(10)60255-8.

Dessì P., Asunis F., Ravishankar H., Cocco F.G., De Gioannis G., Muntoni A., Lens P.N.L. // Int. J. Hydro-gen Energy. 2020. V. 45. N 46. P. 24453-24466. DOI: 10.1016/j.ijhydene.2020.06.081.

Marták J., Schlosser Š. Density, viscosity, and structure of equilibrium solvent phases in butyric acid extraction by phosphonium ionic liquid. J. Chem. Eng. Data. 2017. V. 62. N 10, P. 3025-3035. DOI: 10.1021/acs.jced.7b00039.

Oh H.W., Lee S.C., Woo H.C., Kim Y.H. // Biotechnol. Biofuels Bioprod. 2022. V. 15. 46. DOI: 10.1186/s13068-022-02146-6.

Mukherjee S., Negi D., Nagraj M.S., Munshi B. // J. Chem. Eng. Data. 2021. V. 66. N 7. P. 2733-2753. DOI: 10.1021/acs.jced.1c00122.

Wu X., Li G., Yang H., Zhou H. // Fluid Phase Equilib. 2015. V. 403. P. 36-42. DOI: 10.1016/j.fluid.2015.05.047.

Zinov’eva I.V., Zakhodyaeva Yu.A., Voshkin A.A. // Theor. Found. Chem. Eng. 2019. V. 53. N 5. P. 871–874. DOI: 10.1134/S0040579519050257.

Yan L., Sun Y.-Q, Wang X.-D, Fu H.-X, Mu Y., Xiu Z.-L. // Sep. Purif. Technol. 2018. V. 199. P. 351-358. DOI: 10.1016/j.seppur.2018.02.006.

Li Z., Yan L., Zhou J., Wang X., Sun Y., Xiu Z.-L. // Sep. Purif. Technol. 2019. V. 209. P. 246-253. DOI: 10.1016/j.seppur.2018.07.021.

Krupatkin I.L, Rozhentsova E.P. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 1971. V. 14. N 8. P. 1196-1199 (in Russian).

Cherkasov D.G., Hrykina A.V., Umetchikov V.A., Smotrov M.P. // Izv. Sarat. Univ. Ser. Khimiya. Biologi-ya. Ekologiya. 2020. V. 20. N 2. P. 146-156 (in Russian). DOI: 10.18500/1816-9775-2020-20-2-146-156.

Cherkasov D.G., Il'In K.K. // Rus. J. Appl. Chem. [Zhurn. prikl. khim.]. 2009. V. 82. N 5. P. 920-924. DOI: 10.1134/S1070427209050346.

Cherkasov D.G., Chepurina Z.V., Il’In K.K. // Rus. J. Phys. Chem. A. [Zhurn. fiz. khim.]. 2015. V. 89. N 8. P. 1396-1401. DOI: 10.1134/S0036024415080063.

Kyarov A.A., Mukozheva R.A., Hochuev I.Yu., Mir-zoev R.S., Vindizheva M.K. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 5. P. 38-44. DOI: 10.6060/ivkkt.20206305.5956.

Kuznetsova I.K., Bergman A.G. // Zhurn. Obshch. Khim. 1956. V. 26. N 5. P. 1335-1340 (in Russian).

Krupatkin I.L., Rozhentsova E.P. // Zhurn. Fiz. Khim. 1970. V. 44. N 4. P. 1036-1039 (in Russian).

Romero C.M., Suarez A.F., Lamprecht I. // Thermochim. Acta. 2009. V. 483. P.41-44. DOI: 10.1016/j.tca.2008.10.013.

Suarez F., Romero C.M. // J. Chem. Eng. Data. 2011. V. 56. N 5. P. 1778-1786. DOI: 10.1021/je1002829.

Bald A., Kinart Z. // J. Solution Chem. 2011. V. 40. P. 1-16. DOI: 10.1007/s10953-010-9621-y.

Il’in K.K., Cherkasov D.G. Topology of the phase dia-grams of the ternary systems a salt+two solvents with salt-ing-in–salting-out. Saratov: Izd. Saratov. univ. 2020. 212 p. (in Russian).

Published
2023-07-19
How to Cite
Cherkasov, D. G., Karagulova, M. A., Sheps, Y. A., Balaban, S. N., & Danilina, V. V. (2023). PHASE EQUILIBRIA, SOLUBILITY AND SALTING-OUT EFFECT IN THE TERNARY SYSTEM POTASSIUM NITRATE – WATER – BUTYRIC ACID IN THE RANGE OF 5–100 °C. ChemChemTech, 66(9), 36-45. https://doi.org/10.6060/ivkkt.20236609.6805
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)