EFFECT OF SURFACE TREATMENT ON THE ELECTROCHEMICAL ACTIVITY OF Ti3SiC2/TiC/TiSi COMPOSITE MATERIAL IN THE HYDROGEN EVOLUTION REACTION

  • Viktoria V. Panteleeva Perm State University
  • Anna E. Ponomareva Perm State University
  • Olga A. Firsova Perm State University
  • Anatoliy B. Shein Perm State University
Keywords: titanium carbosilicide Ti3SiC2, titanium carbide TiC, titanium silicide TiSi, hydrogen evolution reaction, electrocatalysis

Abstract

The effect of treatment of the surface layer of the Ti3SiC2/TiC/TiSi composite material on its electrochemical activity in the of hydrogen evolution reaction in 0.5M H2SO4 has been studied. Surface treatment has been carried out by chemical etching in solutions of 15, 30, 45% HF for 15, 30, 45 min at 25 and 60 °C. It has been established that the cathodic polarization curves of the Ti3SiC2/TiC/TiSi-electrode without and with surface treatment have a Tafel section with a slope of 0.060–0.076 V and they are characterized by an overvoltage value of 0.20–0.26 V at i = 1 mA/cm2. The rate of the cathodic reaction as a result of treatment increases by ~1.6-9.8 times. The greatest increase is caused by high-temperature etching in a solution of 30% HF for 30 min while stirring the solution. The impedance spectra of the Ti3SiC2/TiC/TiSi-electrode at Tafel region potentials consist of a capacitive semicircle with a displaced center. On the impedance graphs of the treated electrode, a straight section with a slope above 45º was registered in the region of the highest frequencies, indicating the presence of pores in the surface layer of the electrode. To describe the hydrogen evolution reaction on Ti3SiC2/TiC/TiSi, we used an equivalent electrical circuit, the Faraday impedance of which consists of charge transfer resistances R1 connected in series and a parallel R2C2-chain corresponding to the adsorption of atomic hydrogen on the electrode surface. The equivalent circuit also includes the electrolyte resistance Rs and the double layer capacitance impedance, which is modeled by the constant phase element CPE1. It has been shown that the results of polarization and impedance measurements agree satisfactorily with the discharge–electrochemical desorption mechanism with a quasi-equilibrium discharge stage when the logarithmic Temkin adsorption isotherm for adsorbed atomic hydrogen is fulfilled. It has been concluded that the composite material Ti3SiC2/TiC/TiSi in sulfuric acid electrolyte is a promising electrode material for the electrochemical production of hydrogen.

For citation:

Panteleeva V.V., Ponomareva А.Е., Firsova O.A., Shein А.B., Kachenyuk M.N. Effect of surface treatment on the electrochemical activity of Ti3SiC2/TiC/TiSi composite material in the hydrogen evolution reaction. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 2. P. 37-45. DOI: 10.6060/ivkkt.20246702.6878.

References

Kovac A., Paranos M., Marcius D. Hydrogen in energy transition: A review. Int. J. Hydrog. Energy. 2021. V. 46. N 16. P. 10016-10035. DOI: 10.1016/j.ijhydene.2020.11.256.

Baykara S.Z. Hydrogen: A brief overview on its sources, production and environmental impact. Int. J. Hydrog. Energy. 2018. V. 43. N 23. P. 10605-10614. DOI: 10.1016/j.ijhydene. 2018.02.022.

Tarhan G., Cil M.A. A study on hydrogen, the clean energy of the future: Hydrogen storage methods. J. Energy Storage. 2021. V. 40. P. 102676-102685. DOI: 10.1016/j.est.2021.102676.

Nikolaidis P., Poullikkas A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017. V. 67. P. 597-611. DOI: 10.1016/j.rser.2016.09.044.

Wirth S., Harnisch F., Weinmann M., Schröder U. Comparative study of IVB-VIB transition metal compound electro-catalysts for the hydrogen evolution reaction. Appl. Catal. B: Environ. 2012. V. 126. P. 225-230. DOI: 10.1016/j.apcatb.2012.07.023.

Eftekhari A. Electrocatalysts for hydrogen evolution reaction. Int. J. Hydrog. Energy. 2017. V. 42. N 16. P. 11053-11077. DOI: 10.1016/j.ijhydene.2017.02.125.

Verma J., Goel S. Cost-effective electrocatalysts for Hydrogen Evolution Reactions (HER): Challenges and Prospects. Int. J. Hydrog. Energy. 2022. V. 47. N 92. P. 38964-38982. DOI: 10.1016/j.ijhydene.2022.09.075.

Zhang Z., Duan X., Jia D., Zhou Y., Sybrand Z. On the formation mechanisms and properties of MAX phases: A review. J. Eur. Ceram. Soc. 2021. V. 41. N 7. P. 3851-3878. DOI: 10.1016/j.jeurceramsoc.2021.02.002.

Rosli N.F., Nasir M.Z.M., Antonatos N., Sofer Z., Dash A., Gonzalez-Julian J., Fisher A.C., Webster R.D., Pumera M. MAX and MAB Phases: Two-Dimensional Lay-ered Carbide and Boride Nanomaterials for Electrochemical Applications. ACS Appl. Nano Mater. 2019. V. 2. N 9. P. 6010-6021. DOI: 10.1021/acsanm.9b01526.

Kumar K.P.A., Alduhaish O., Pumera M. Electrocatalytic activity of layered MAX phases for the hydrogen evolution reaction. Electrochem. Commun. 2021. V. 125. 106977. DOI: 10.1016/j.elecom.2021.106977.

Jovic V.D., Jovic B.M., Gupta S., El-Raghy T., Barsoum M.W. Corrosion behavior of select MAX phases in NaOH, HCl and H2SO4. Corros. Sci. 2006. V. 48. N 12. P. 4274-4282. DOI: 10.1016/j.corsci.2006.04.005.

Travaglini J., Barsoum M.W., Jovic V., El-Raghy T. The corrosion behavior of Ti3SiC2 in common acids and dilute NaOH. Corros. Sci. 2003. V. 45. N 6. P. 1313-1327. DOI: 10.1016/S0010-938X(02)00227-5.

Jaccaud M., Leroux F., Millet J.C. New chloralkali activated cathodes. Mater. Chem. Phys. 1989. V. 22. N 1-2. P. 105-119. DOI: 10.1016/0254-0584(89)90033-3.

Safizadeh F., Ghali E., Houlachi G. Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions – A Review. Int. J. Hydrog. Energy. 2015. V. 40. N 1. P. 256-274. DOI: 10.1016/j.ijhydene.2014.10.109.

Rad P.J., Aliofkhazraei M., Darband Gh.B. Ni-W nanostructure well-marked by Ni selective etching for en-hanced hydrogen evolution reaction. Int. J. Hydrog. Energy. 2019. V. 44. N 2. P. 880-894. DOI: 10.1016/j.ijhydene.2018.11.026.

Shi J., Qiu F., Yuan W., Guo M., Yuan C., Lu Z.-H. Novel electrocatalyst of nanoporous FeP cubes prepared by fast electrodeposition coupling with acid-etching for efficient hy-drogen evolution. Electrochim. Acta. 2020. V. 329. 135185. DOI: 10.1016/j.electacta.2019.135185.

Ponomareva A.E., Panteleeva V.V., Shein A.B. Electro-chemical activity of titanium disilicide in hydrogen evolution reaction in alkaline electrolyte. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 3. P. 52-59 (in Russian). DOI: 10.6060/ivkkt.20226503.6495.

Handoko A.D., Fredrickson K.D., Anasori B., Convey K.W., Johnson L.R., Gogotsi Yu., Vojvodic A., She Z.W. Tuning the Basal Plane Functionalization of Two-Dimensional Metal Carbides (MXenes) to Control Hydrogen Evolution Activity. ACS Appl. Energy Mater. 2018. V.1. N 1. P. 173-180. DOI: 10.1021/acsaem.7b00054.

Zhang Ch.J., Ma Y., Zhang X., Abdolhosseinzadeh S., Sheng H., Lan W., Pakdel A., Heier J., Nuesch F. Two-Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis, Properties, and Electrochemical Energy Storage Applications. Energy Environ. Mater. 2020. V. 3. N 1. P. 29-55. DOI: 10.1002/eem2.12058.

Bai S., Yang M., Jiang J.,He X., Zou J., Xiong Z., Liao G., Liu S. Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. Npj 2D Mater. Appl. 2021. V. 5. N 78. P. 1-15. DOI: 0.1038/s41699-021-00259-4.

Li Yu., Zhang B., Wang W., Shi X., Zhang J., Wang R., He B., Wang Q., Jiang J., Gong Y., Wang H. Selective-etching of MOF toward hierarchical porous Modoped CoP/N-doped carbon nanosheet arrays for efficient hydrogen evolution at all pH values. Chem. Eng. J. 2021. V. 405. 126981. DOI: 10.1016/j.cej.2020.126981.

Chen X., Li D., Wen Y., Zhang H., Li Yu., Ni H. Favorable surface etching of NiRuFe(OH)x in neutral hydrogen evolution reaction. Catal. Today. 2022. V. 400-401. P. 1-5. DOI: 10.1016/j.cattod.2022.04.005.

Antsiferov V.N., Kachenyuk M.N., Smetkin A.A. Packing and phase formation regularities in Ti-SiC-C system at spark-plasma sintering. Novye Ogneupory. 2015. N 4. P. 16-19 (in Russian). DOI: 10.17073/1683-4518-2015-4-16-19.

Orazem M.E., Tribollet B. Electrochemical Impedance Spectroscopy. Hoboken: John Wiley and Sons. 2008. 533 p.

Mikeska K.R., Bennison S.J., Grise S.L. Corrosion of Ceramics in Aqueous Hydrofluoric Acid. J. Am. Ceram. Soc. 2000. V. 83. N 5. P. 1160-1164. DOI: 10.1111/J.1151-2916.2000.TB01348.X.

Alhabeb M., Maleski K., Mathis T.S., Sarycheva A., Hatter Ch.B., Uzun S., Levitt A., Gogotsi Yu. Selective Etching of Silicon from Ti3SiC2 (MAX) Produces 2D Titanium Carbide (MXene). Angew. Chem. Int. Ed. 2018. V. 57. N 19. DOI: 10.1002/anie.201802232.

Samsonov G.V., Dvorina L.A., Rud' B.M. Silicides. M.: Metallurgiya. 1979. 272 p. (in Russian).

Thissen P., Seitz O., Chabal Y.J. Wet chemical surface functionalization of oxide-free silicon. Prog. Surf. Sci. 2012. V. 87. N 9-12. P. 272-290. DOI: 10.1016/j.progsurf.2012.10.003.

Panteleeva V.V., Ponomareva A.E., Firsova O.A., Shein A.B., Kachenyuk M.N. Electrochemical activity of Ti3SiC2/TiC composite material in the hydrogen evolution reaction. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N. 12. P. 117-123 (in Russian). DOI: 10.6060/ivkkt.20236612.6774.

Lasia A. Modeling of impedance of porous electrode. In: Modern Aspects of Electrochemistry. N 43. Ed. by M. Schlesinger. New York: Springer. 2009. P. 67-137.

Harrington D.A., Conway B.E. Impedance of Faradaic reactions involving electrosorbed intermediates – I. Kinetic theory. Electrochim. Acta. 1987. V. 32. N 12. P.1703-1712. DOI: 10.1016/0013-4686(87)80005-1.

Kichigin V.I., Shein A.B. Diagnostic criteria for hydrogen evolution mechanisms in electrochemical impedance spectroscopy. Electrochim. Acta. 2014. V. 138. P. 325-333. DOI: 10.1016/j.electacta.2014.06.114.

Thomas J.G.N. Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metals. Trans. Farad. Soc. 1961. V. 57. N 9. P. 1603-1611. DOI: 10.1039/TF9615701603.

Krishtalik L.I. Electrode reactions. The mechanism of the elementary act. M.: Nauka. 1979. 224 p. (in Russian).

Published
2023-12-26
How to Cite
Panteleeva, V. V., Ponomareva, A. E., Firsova, O. A., & Shein, A. B. (2023). EFFECT OF SURFACE TREATMENT ON THE ELECTROCHEMICAL ACTIVITY OF Ti3SiC2/TiC/TiSi COMPOSITE MATERIAL IN THE HYDROGEN EVOLUTION REACTION. ChemChemTech, 67(2), 37-45. https://doi.org/10.6060/ivkkt.20246702.6878
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)

Most read articles by the same author(s)