ELECTROCHEMICAL ACTIVITY OF Ti3SiC2/TiC COMPOSITE MATERIAL IN THE HYDROGEN EVOLUTION REACTION
Abstract
The kinetics and mechanism of the hydrogen evolution reaction on Ti3SiC2/TiC composite material in solutions x M H2SO4 + (0.5–x) M Na2SO4 (x = 0.5; 0.35; 0.20; 0.05) have been investigated by the polarization and impedance measurements. The cathodic polarization curves of Ti3SiC2/TiC electrode in the studied solutions have the same type and are characterized by the presence of Tafel section with constants a and b equal to -(0.44–0.45) and -(0.060–0.062) V, respectively. The reaction order of the cathodic process with respect to hydrogen ions is ~1.0. The impedance spectra of Ti3SiC2/TiC electrode at Tafel region potentials consist of a capacitive semicircle with a displaced center at high frequencies and an inductive arc at low frequencies. To describe the hydrogen evolution reaction on Ti3SiC2/TiC, we used an equivalent electrical circuit, the Faraday impedance of which consists of series-connected charge transfer resistance R1 and a parallel R2C2 circuit (at R2 < 0, C2 < 0) corresponding to the adsorption of atomic hydrogen on the electrode surface. The equivalent circuit also includes the electrolyte resistance Rs and the double-layer capacitance impedance, which is modeled by a constant phase element CPE1. The results of electrochemical measurements are in satisfactory agreement with the discharge-electrochemical desorption mechanism, in which both stages are irreversible and have unequal transfer coefficients. For adsorbed atomic hydrogen the Langmuir adsorption isotherm is satisfied. It is concluded that the composite material Ti3SiC2/TiC in sulfuric acid electrolyte is a promising electrode material for the electrochemical production of hydrogen.
For citation:
Panteleeva V.V., Ponomareva А.Е., Firsova O.A., Shein А.B., Kachenyuk M.N. Electrochemical activity of Ti3SiC2/TiC composite material in the hydrogen evolution reaction. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 12. P. 117-123. DOI: 10.6060/ivkkt.20236612.6774.
References
Eftekhari A. // Int. J. Hydrogen Energy. 2017. V. 42. N 16. P. 11053-11077. DOI: 10.1016/j.ijhydene.2017.02.125.
Kuzminykh M.M., Panteleeva V.V., Shein A.B. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 2. P. 59-64 (in Russian). DOI: 10.6060/ivkkt.20196202.5750.
Panteleeva V.V., Simonov G.A., Shein A.B., Miloserdov P.A., Gorshkov V.A. // Kondens. Sredy Mezhfasn.Gratitsy. 2022. V. 24. N. 2. P. 256-264 (in Russian). DOI: 10.17308/ kcmf.2022.24/9266.
Ponomareva A.E., Panteleeva V.V., Shein A.B. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 3. P. 52-59 (in Russian). DOI: 10.6060/ivkkt.20226503.6495.
Verma J., Goel S. // Int. J. Hydrogen Energy. 2022. V. 47. N 92. P. 38964-38982. DOI: 10.1016/j.ijhydene.2022.09.075.
Jaccaud M., Leroux F., Millet J.C. // Mater. Chem. Phys. 1989. V. 22. N 1-2. P. 105-119. DOI: 10.1016/0254-0584(89)90033-3.
Safizadeh F., Ghali E., Houlachi G. // Int. J. Hydrogen Energy. 2015. V. 40. N 1. P. 256-274. DOI: 10.1016/ j.ijhydene.2014.10.109.
Wirth S., Harnisch F., Weinmann M., Schröder U. // Appl. Catal. B: Environ. 2012. V. 126. P. 225-230. DOI: 10.1016/ j.apcatb.2012.07.023.
Syugaev A.V., Lyalina N.V., Lomaeva S.F., Reshetnikov S.M. // Prot. Met. Phys. Chem. Surf. 2012. V. 48. N 5. P. 515-519. DOI: 10.1134/S2070205112050127.
Chen W., Muckerman J.T., Fujita E. // Chem. Commun. 2013. V. 49. P. 8896-8909. DOI: 10.1039/C3CC44076A.
Michalsky R., Zhang Y., Peterson A.A. // ACS Catal. 2014. V. 4. P. 1274-1278. DOI: 10.1021/cs500056u.
Regmi Y.N., Waetzig G.R., Duffee K.D., Schmuecker S.M., Thode J.M., Leonard B.M. // J. Mater. Chem. A. 2015. V. 3. P. 10085-10091. DOI: 10.1039/C5TA01296A.
Sokol M., Natu V., Kota S., Barsoum M.W. // Trends Chem. 2019. V. 1. N 2. P. 210-223. DOI: 10.1016/j.trechm. 2019.02.016.
Zhang Z., Duan X., Jia D., Zhou Y., Sybrand Z. // J. Eur.Ceramic Soc. 2021. V. 41. N 7. P. 3851-3878. DOI: 10.1016/j.jeurceramsoc.2021.02.002.
Jovic V.D., Jovic B.M., Gupta S., El-Raghy T., Barsoum M.W. // Corros. Sci. 2006. V. 48. N 12. P. 4274-4282. DOI: 10.1016/j.corsci.2006.04.005.
Rosli N.F., Nasir M.Z.M., Antonatos N., Sofer Z., Dash A, Gonzalez-Julian J., Fisher A.C., Webster R.D., Pumera M. // ACS Appl. Nano Mater. 2019. V. 2. N 9. P. 6010-6021. DOI: 10.1021/acsanm.9b01526.
Kumar K.P.A., Alduhaish O., Pumera M. // Electrochem. Commun. 2021. V. 125. 106977. DOI: 10.1016/j.elecom. 2021.106977.
Antsiferov V.N., Kachenyuk M.N., Smetkin A.A. // Novye Ogneupory. 2015. N 4. P. 16-19 (in Russian). DOI: 10.17073/1683-4518-2015-4-16-19.
Orazem M.E., Tribollet B. Electrochemical Impedance Spectroscopy. Hoboken: John Wiley and Sons. 2008. 533 p.
Conway B.E., Bai L., Sattar M.A. // Int. J. Hydrogen Energy. 1987. V. 12. N 9. P. 607-621. DOI: 10.1016/0360-3199(87)90002-4.
Diard J.-P., Le Gorrec B., Maximovitch S. // Electrochim. Acta. 1990. V. 35. N 6. Р. 1099-1108. DOI: 10.1016/0013-4686(90)90049-6.
Harrington D.A., Conway B.E. // Electrochim. Acta. 1987. V. 32. N 12. P.1703-1712. DOI: 10.1016/0013-4686(87)80005-1.
Lasia A. Electrochemical Impedance Spectroscopy and its Applications. New York: Springer. 2014. 367 p.
Kichigin V.I., Shein A.B. // Electrochim. Acta. 2014. V. 138. P. 325-333. DOI: 10.1016/j.electacta.2014.06.114.
Kitchin J.R., Nørskov J.K., Barteau M.A., Chen J.G. // Catal. Today. 2005. V. 105. N 1. P. 66-73. DOI: 10.1016/ j.cattod.2005.04.008.
Medford A.J., Vojvodic A., Studt F., Abild-Pedersen F., Nørskov J.K. // J. Catal. 2012. V. 290. P. 108-117. DOI: 10.1016/j.jcat.2012.03.007.