SYNTHESIS, CONFORMATIONAL ANALYSIS AND ANTIOXIDANT ACTIVITY OF SEMICARBAZONES WITH PHENOL FRAGMENTS

  • Vladimir N. Koshelev National University of Oil and Gas «Gubkin University»
  • Kirill V. Ilkov National University of Oil and Gas «Gubkin University»
  • Olga V. Primerova National University of Oil and Gas «Gubkin University»
  • Anastasia A. Gladkikh National University of Oil and Gas «Gubkin University»
Keywords: semicarbazones, phenols, synthesis, antioxidants

Abstract

In the present work, a number of semicarbazones with phenolic fragments were synthesized. A conformational analysis of the obtained compounds was carried out, and their antioxidant properties were evaluated. Semicarbazones containing phenolic fragments are of interest as effective antioxidants which are able to neutralize free radicals and prevent oxidative stress, which is associated with a wide range of diseases, including cancer, diabetes, and cardiovascular disease. Semicarbazones with fragments of resorcinol, 2-methoxyphenol, 2,6-di-tert-butylphenol, alkylated pyrocatechol were synthesized. The yields were 72-82%. Semicarbazones of 2,3-dihydroxy-4,6-di-tert-butylbenzaldehyde and 4-hydroxy-3,5-di-tert-butylacetophenone were synthesized for the first time. The IR spectra of the compounds show absorption in the region of 1577–1598 cm–1, corresponding to the frequency of C=N stretching vibrations, and signals near 1668–1679 cm–1, corresponding to C=O stretching vibrations in semicarbazones. In the 1H NMR spectra, the aldehyde protons of the starting compounds in the downfield region of the spectrum are replaced by a sharp singlet at 7.73–9.31 ppm, which indicates the presence of CH=N fragments. There is also a peak in the 10 ppm region corresponding to one NH proton, and peak per 2 protons at 6 ppm corresponding to NH2 protons. The conformational analysis of the obtained compounds was carried out using quantum chemical calculations using the B3LYP functional and the 6-311+G (d,p) basis set, as well as NOESY two-dimensional NMR correlation spectroscopy. The antioxidant activity of all products was determined in vitro: radical cation scavenging activity was assessed using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) and iron reduction capacity was determined using the PFRAP method (ferricyanide/prussian blue). All the studied substances showed a higher antioxidant activity compared to agidol. Semicarbazones with fragments of 2-methoxyphenol and 2,6-di-tert-butylphenol showed the best ability to inhibit radical cations. Semicarbazones with a fragment of resorcinol and alkylated pyrocatechol showed the best iron-reducing activity.

For citation:

Koshelev V.N., Ilkov K.V., Primerova O.V., Gladkikh A.A. Synthesis, conformational analysis and antioxidant activity of semicarbazones with phenol fragments. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 9. P. 71-76. DOI: 10.6060/ivkkt.20236609.6906.

References

Pisoschi A.M., Pop A., Iordache F., Stanca L., Predoi G., Serban A.I. // Eur. J. Med. Chem. 2021. V. 209. P. 112891. DOI: 10.1016/j.ejmech.2020.112891.

Halliwell B. How to characterize an antioxidant: an update. Biochemical Society Symposium. 1995. 61. P. 73–101. DOI: 10.1042/bss0610073.

Li J., Zhang S., Kuang Y., Bi Y., Wang H. // J. Am. Oil Chem. Soc. 2023. V. 100. N 4. P. 259-285. DOI: 10.1002/aocs.12684.

Ksendzova G.A., Ostrovskaya N.I., Sorokin V.L., Shadyro O.I. // High Energy Chemistry. 2022. V. 56. N 5. P. 344-347. DOI: 10.1134/S0018143922050083.

Nagieva M.V., Rasulov Ch.K. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N. 6. P. 85-93 (in Russian). DOI: 10.6060/ivkkt.20236606.6777.

Agamaliev Z.Z.., Abbasov V.M., Rasulov Ch.K., Nazarov I.G., Rzaeva N.Sh., Nagieva M.V. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 2. P. 17-24 (in Russian). DOI: 10.6060/ivkkt.20196202.5786.

Nagamallu R., Srinivasan B., Ningappa M.B., Kariyappa A.K. // Bioorg. Med. Chem. Lett. 2016. V. 26. N 2. P. 690-694. DOI: 10.1016/j.bmcl.2015.11.038.

Dutta S., Padhye S., Priyadarsini K.I., Newton C. // Bioorg. Med. Chem. Lett. 2005. V. 15. N 11. P. 2738-2744. DOI: 10.1016/j.bmcl.2005.04.001.

More M.S., Joshi P.G., Mishra Y.K., Khanna P.K. // Mater. Today Chem. 2019. V. 14. P. 100195. DOI: 10.1016/j.mtchem. 2019.100195.

Laufer S.A., Striegel H.-G., Wagner G.K. // J. Med. Chem. 2002. V. 45. N 21. P. 4695-4705. DOI: 10.1021/jm020873z.

Scarim C.B., Jornada D.H., Machado M.G.M., Ferreira C.M.R., dos Santos J.L., Chung M.C. // Eur. J. Med. Chem. 2019. V. 162. P. 378-395. DOI: 10.1016/j.ejmech.2018.11.013.

Nakayama T., Uno B. // J. Agricult. Food Chem. 2023. V. 71. N 10. P. 4382-4393. DOI: 10.1021/acs.jafc.2c08105.

Shi G., Gu L., Jung H., Chung W.-J., Koo S. // ACS Omega. 2021. V. 6. N 38. P. 25096-25108. DOI: 10.1021/acsomega. 1c04432.

Tukhvatullin R.F., Kolchina G.Yu., Movsumzade E.V., Mamedova P.Sh. Babaev E.R. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2018. V. 61. N 4-5. P. 84-92 (in Russian). DOI: 10.6060/tcct.20186104-05.5659.

Carrasco F., Hernández W., Chupayo O., Álvarez C.M., Oramas-Royo S., Spodine E., Tamariz-Angeles C., Olivera-Gonzales P., Dávalos J.Z. // J. Chem. 2020. V. 2020. P. 7157281. DOI: 10.1155/2020/7157281.

Cerecetto H., Di Maio R., González M., Risso M., Sagrera G., Seoane G., Denicola A., Peluffo G., Quijano C., Stoppani A.O.M., Paulino M., Olea-Azar C., Basombrío M.A. // Eur. J. Med. Chem. 2000. V. 35. N 3. P. 343-350. DOI: 10.1016/S0223-5234(00)00131-8.

Nath A.R., Yehye W.A., Johan M.R.B. // J. Therm. Anal. Calorim. 2021. V. 146. N 5. P. 2101-2114. DOI: 10.1007/s10973-020-10199-8.

Ksendzova G.A., Ostrovskaya N.I., Semenkova G.N., Sorokin V.L., Shishkanova P.A., Shadyro O.I. // Russ. J. Gen. Chem. 2019. V. 89. N 3. P. 391-398. DOI: 10.1134/S1070363219030046.

Dennington R., Keith T., Millam J. Semichem Inc. Shawnee Mission KS, GaussView, Version. 2009. V. 5. N 8.

Venkatachalam T., Pierens G.K., Reutens D.C. // Magn. Reson. Chem. 2014. V. 52. N 3. P. 98-105. DOI: 10.1002/mrc.4041.

Pretsch E., Bühlmann P., Affolter C., Pretsch E., Bhuhlmann P., Affolter C. Structure determination of organic compounds. Springer. 2000. DOI: 10.1007/978-3-662-04201-4.

Jakovljević K., Matić I.Z., Stanojković T., Krivokuća A., Marković V., Joksović M.D., Mihailović N., Nićifo-rović M., Joksović L. // Bioorg. Med. Chem. Lett. 2017. V. 27. N 16. P. 3709-3715. DOI: 10.1016/j.bmcl.2017.07.003.

Published
2023-07-19
How to Cite
Koshelev, V. N., Ilkov, K. V., Primerova, O. V., & Gladkikh, A. A. (2023). SYNTHESIS, CONFORMATIONAL ANALYSIS AND ANTIOXIDANT ACTIVITY OF SEMICARBAZONES WITH PHENOL FRAGMENTS. ChemChemTech, 66(9), 71-76. https://doi.org/10.6060/ivkkt.20236609.6906
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)

Most read articles by the same author(s)