DEGRADATION OF ACID ORANGE 7 IN AQUEOUS SOLUTION UNDER PRESENCE OF IRON(III), PERSULPHATE AND VISIBLE LIGHT IRRADIATION

  • Heng Zhong Ivanovo State University of Chemistry and Technology
  • Jun Li Wuhan Textile University
  • Hui Zhao Ivanovo State University of Chemistry and Technology
  • Lei Sun Ivanovo State University of Chemistry and Technology
  • Aihua Xu Wuhan Textile University
  • Dongsheng Xia Wuhan Textile University
  • Alexander V. Nevsky Ivanovo State University of Chemistry and Technology
Keywords: dye degradation, Acid Orange 7, ferric iron, persulfate, photocatalyst oxidation, visible light, inorganic negtive ions

Abstract

In this study, the degradation of Acid Orange 7 (AO7) in aqueous solutions by iron(III) under activation by persulfate (PS, S2O82-) oxidation and Visible (Vis) light (≥420 nm) exposure was performed. The efficiency of different systems including Fe3+/Vis, Fe3+/PS, PS/Vis and Fe3+/PS/Vis has been evaluated. It was found that the efficiency of Fe3+/PS and PS/Vis system was low, and only about 48% of AO7 was oxidized within 20 min of experiment time under Fe3+/Vis system action, and it was further improved to almost 95% within 20 min by Fe3+/PS/Vis system. Various process-dependent parameters, such as PS, Fe3+, dye concentration as well as initial pH were investigated to optimize the process. As results indicated, the dye's degradation efficiency increased with the increase of PS and Fe3+ concentration over the tested range. The pH had an insignificant effect on the degradation of AO7. The effect of inorganic anions was also investigated and the suppressive effects of inorganic anions can be ranked in an ascending order of Cl≈NO3<SO42−<HCO3≈HPO42−.

Forcitation:

Heng Zhong, Jun Li, Hui Zhao, Lei Sun, Aihua Xu, Dongsheng Xia, Nevsky A.V. Degradation of acid orange 7 in aqueous solution under presence of iron (III), persulphate and visible light irradiation. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 3. P. 48-54.

References

Huang K.C., Couttenye R.A., Hoag G.E. Kinetics of heat-assisted persulfate oxidation of methyl tert -butyl ether (MTBE). Chemosphere. 2002. V. 49. N 4. P. 413-420. DOI: 10.1016/S0045-6535(02)00330-2.

Lei Y., Chen C.S., Tu Y.J., Huang Y.H., Zhang H. Heterogeneous degradation of organic pollutants by persulfate activated by CuO-Fe3O4: Mechanism, stability, and effects of pH and bicarbonate ions. Environmental Science & Technology. 2015.

V. 49. N 11. P. 6838-6845. DOI: 10.1021/acs.est.5b00623.

Oh S.Y., Kim H.W., Park J.M., Park H.S., Yoon C. Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero valent iron. J. Hazard Mater. 2009. V. 168. N 1. P. 346-351. DOI: 10.1016/j.jhazmat.2009.02.065.

Tan C., Gao N., Yang D., Rong W., Zhou S., Lu N. Degradation of antipyrine by heat activated persulfate. Separation & Purification Technology. 2013. V. 109. N 19. P. 122-128. DOI: 10.1016/j.seppur.2013.03.003.

Huang K.C., Zhao Z., Hoag G.E., Dahmani A., Block P.A. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere. 2005. V. 61. N 4. P. 551-560. DOI: 10.1016/j.chemosphere.2005.02.032.

Furman O.S., Teel A.L., Watts R.J. Mechanism of base activation of persulfate. Environmental Science & Technology. 2010. V. 44. N 16. P. 6423-6428. DOI: 10.1021/es1013714.

Xie P., Ma J., Liu W., Zou J., Yue S., Li X.C., Wiesner M.R., Fang J.Y. Removal of 2-MIB and geosmin using UV/persulfate: Contributions of hydroxyl and sulfate radicals. Water Res. 2015. V. 69. P. 223-233. DOI: 10.1016/j.watres.2014.11.029.

Lin Y.T., Liang C., Chen J.H. Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere. 2011. V. 82. N 8. P. 1168-1172. DOI: 10.1016/j.chemosphere.2010.12.027.

Torres-Luna J.R., Ocampo-Pérez R., Sánchez-Polo M., Utrilla J.R., Velo-Gala I., Bernal-Jacome L.A. Role of HO and SO4- radicals on the photodegradation of remazol red in aqueous solution. Chem. Eng. J. 2013. V. 223. P. 155–163. DOI: 10.1016/j.cej.2013.02.127.

Criquet J., Leitner N.K.V. Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis. Chemosphere. 2009. V. 77. N 2. P. 194-200. DOI: 10.1016/j.chemosphere.2009.07.040.

Price G.J., Clifton A.A., Keen F. Ultrasonically enhanced persulfate oxidation of polyethylene surfaces. Polymer. 1996. V. 37. N 26. P. 5825-5829. DOI: 10.1016/S0032-3861(96)00451-X.

Jie W., Hui Z., Qiu J. Degradation of Acid Orange 7 in aqueous solution by a novel electro/Fe2+/peroxydisulfate process. J. Hazard. Materials. 2012. N 4. P. 138-145.

Jiang X., Wu Y., Wang P., et al. Degradation of bisphenol A in aqueous solution by persulfate activated with ferrous ion. Environ-mental Science & Pollution Research. 2013. V. 20. N 7. P. 4947-4953. DOI: 10.1007/s11356-013-1468-5.

Gong Y., Lin L. Oxidative decarboxylation of levulinic acid by silver(I)/persulfate. Molecules. 2011. V. 16. N 3. P. 2714-2725. DOI: 10.3390/molecules16032714.

Zhu L.L., Ai Z.H., Ho W.K., Zhang L.Z. Core–shell Fe–Fe2O3, nanostructures as effective persulfate activator for degradation of methyl orange. Separation & Purification Technology. 2013. V. 108. N 16. P. 159-165. DOI: 10.1016/j.seppur.2013.02.016.

Zhao Y.S., Sun C., Sun J.Q., Zhou R. Kinetic modeling and efficiency of sulfate radical-based oxidation to remove p-nitroaniline from wastewater by persulfate/Fe3O4, nanoparticles process. Separation & Purification Technology. 2015. V. 142. P. 182-188. DOI: 10.1016/j.seppur.2014.12.035.

Xu X.R., Li X.Z. Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Separation & Purification Technology. 2010. V. 72. N 1. P. 105-111. DOI: 10.1016/j.seppur.2010.01.012.

Han D.H., Wan J.Q., Ma Y.W., Wang Y., Li Y., Li D.Y., Guan Z.Y. New insights into the role of organic chelating agents in Fe(II) activated persulfate processes. Chem. Eng. J. 2015. V. 269. P. 425-433. DOI: 10.1016/j.cej.2015.01.106.

Weng C.H., Ding F., Lin Y.T., Liu N. Effective decolorization of polyazo direct dye Sirius Red F3B using persulfate activated with Fe0 aggregate. Separation & Purification Technology. 2015. V. 147. P. 147-155. DOI: 10.1016/j.seppur.2015.03.062.

Rastogi A., Al-Abed S.R., Dionysiou D.D. Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degrada-tion in aqueous and sediment systems. Applied Catalysis B Environmental. 2009. V. 85. N 3. P. 171-179. DOI: 10.1016/j.apcatb.2008.07.010.

Rastogi A., Al-Abed S.R., Dionysiou D.D. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols. Water Research. 2009. V. 43. N 3. P. 684-694. DOI: 10.1016/j.watres.2008.10.045.

Zou J., Ma J., Chen L.W., Li X.C., Guan Y.H., Xie P.C., Pan C. Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine. Environmental Science & Technology. 2013. V. 47. N 20. P. 11685-11691. DOI: 10.1021/es4019145.

Lin H., Wu J., Zhang H. Degradation of clofibric acid in aqueous solution by an EC/Fe3+ /PMS process. Chem. Eng. J. 2014. V. 244. N 1. P. 514-521. DOI: 10.1016/j.cej.2014.01.099.

Mavronikola C., Demetriou M., Hapeshi E., Partassides D., Michael C., Mantzavinos D., Kassinos D. Mineralisation of the antibiotic amoxicillin in pure and surface waters by artificial UVA‐and sunlight‐induced Fenton oxidation. J. Chem. Technology & Biotechnology. 2009. V. 84. N 8. P. 1211-1217. DOI: 10.1002/jctb.2159.

Su M., He C., Sharma V.K., Asi M.A., Xia D.H., Li X.Z., Deng H.Q., Xiong Y. Mesoporous zinc ferrite: Synthesis, characteriza-tion, and photocatalytic activity with H2O2/visible light. J. Hazard. Materials. 2012. V. 211-212. N 8. P. 95-103. DOI: 10.1016/j.jhazmat.2011.10.006.

Xie Y., Chen F., He J., et al. Photoassisted degradation of dyes in the presence of Fe3+ and H2O2 under visible irradiation. J. Photo-chemistry & Photobiology A Chemistry. 2000. V. 136. N 3. P. 235-240.

Hussain I., Zhang Y., Huang S. Degradation of aniline with zero-valent iron as an activator of persulfate in aqueous solution. Rsc Advances. 2014. V. 4. N 7. P. 3502-3511. DOI: 10.1039/C3RA43364A.

Nevsky A.V., Meshalkin V.P., Sharnin V.A. Analysis and Synthesis of Water Resource-Saving Chemical Processes. M.: Science PH. 2004. 212 p.

Published
2017-04-13
How to Cite
Zhong, H., Li, J., Zhao, H., Sun, L., Xu, A., Xia, D., & Nevsky, A. V. (2017). DEGRADATION OF ACID ORANGE 7 IN AQUEOUS SOLUTION UNDER PRESENCE OF IRON(III), PERSULPHATE AND VISIBLE LIGHT IRRADIATION. ChemChemTech, 60(3), 48-54. https://doi.org/10.6060/tcct.2017603.5544
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)

Most read articles by the same author(s)