N-SALICYLOYL AMIDES AND THEIR SALTS: SYNTHESIS, BIOLOGICAL ACTIVITY AND TOXICITY

  • Anatoli K. Brel Volgograd State Medical University
  • Svetlana V. Lisina Volgograd State Medical University
  • Yulia N. Budaeva Volgograd State Medical University https://orcid.org/0000-0003-2034-8285
Keywords: salicyloyl amides, Glycine, Morpholine, gamma-aminobutyric acid (GABA), alkali metals salts, biological activity, toxicity

Abstract

The Schotten-Baumann reaction was used to synthesize N-salicyloyl derivatives of Morpholine, Glycine and gamma-aminobutyric acid in the process between salicyloyl chloride with morpholine, glycine or gamma-aminobutyric acid with high yield. Sodium and lithium salts of the salicylamides were synthesized by the reaction of an amide with sodium ethylate or lithium hydroxide in inert solvent. The synthesized compounds were charachterized by 1H nuclear magnetic resonance spectra and elemental analysis. Purity was checked by thin layer chromatography. Quantitative analysis of metal ions was done by potentiometry. To select the most promising compounds exhibiting psychotropic (Pa > 0.8) and antiviral (Pa about 0.5) activities, computer analysis was carried out through the PASS program. In the present study, psychotropic (the open-field exploratory test, the forced swim test, the elevated plus-maze test, the passive avoidance test), analgesic (current vocalization threshold) activities and acute toxicity were evaluated. The results of psychotropic activity revealed that amides possess significant psychotropic activity and low acute toxicity. Disodium salicylurate showed a significant antiamnesic action. The results suggested a significant antidepressant activity and antiamnesic action for dilithium salicylurate and sodium salt of salycyloyl morphlide, a psychostimulant action for lithium salt of salicyloyl morphlide. Lithium gamma-(N-salycylamino)butyrate demonstrated psychostimulant and antiamnesic activities. Our present investigation demonstrated that all compounds are very safe for consumption with high LD50 value. All obtained compounds were evaluated for their antiviral activities against a large number of DNA and RNA viruses including herpes simplex viruses 1 and 2, vaccinia virus, vesicular stomatitis virus, HIV-1 and HIV-2. These compounds were evaluated against human cervix carcinoma cells (HeLa) and CEM T-lymphocytes as well as murine leukemia cells (L1210). The antiviral activity studies depicted that none of the tested compounds were active against DNA or RNA viruses.

For citation:

Brel A.K., Lisina S.V., Budaeva Yu.N. N-salicyloyl amides and their salts: synthesis, biological activity and toxicity. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 3. P. 103-110. DOI: 10.6060/ivkkt.20246703.6915.

Author Biographies

Svetlana V. Lisina, Volgograd State Medical University

the Head of Chemistry Department, professor

Yulia N. Budaeva, Volgograd State Medical University

доцент кафедры химии ВолгГМУ, кандидат химических наук

References

Konovalov A.I., Antipin I.S., Burilov V.A., Madzhidov T.I., Kurbangalieva A.R., Nemtarev A.V., Solovieva S.E., Stoikov I.I., Mamedov V.A., Zakharova L.Ya., Gavrilova E.L., Sinyashin O.G., Balova I.A., Vasilyev A.V., Zenkevich I.G., Krasavin M.Yu., Kuznetsov M.A., Molchanov A.P., Novikov M.S., Nikolaev V.A., Rodina L.L., Khlebnikov A.F., Beletskaya I.P., Vatsadze S.Z., Gromov S.P., Zyk N.V., Lebedev A.T., Lemenovskii D.A., Petrosyan V.S., Nenaidenko V.G., Negrebetskii V.V., Baukov Yu.I., Shmigol’ T.A., Kor-lyukov A.A., Tikhomirov A.S., Shchekotikhin A.E., Traven’ V.F., Voskresenskii L.G., Zubkov F.I., Golubchikov O.A., Semeikin A.S., Berezin D.B., Stuzhin P.A., Filimonov V.D., Krasnokutskaya E.A., Fedorov A.Yu., Nyuchev A.V., Orlov V.Yu., Begunov R.S., Rusakov A.I., Kolobov A.V., Kofanov E.R., Fedotova O.V., Egorova A.Yu., Charushin V.N., Chupakhin O.N., Klimochkin Yu.N., Osyanin V.A., Reznikov A.N., Fisyuk A.S., Sagitullina G.P., Aksenov A.V., Aksenov N.A., Grachev M.K., Maslennikova V.I., Koroteev M.P., Brel’ A.K., Lisina S.V., Medvedeva S.M., Shikhaliev Kh.S., Suboch G.A., Tovbis M.S., Mironovich L.M., Ivanov S.M., Kurbatov S.V., Kletskii M.E., Burov O.N., Kobrakov K.I., Kuznetsov D.N. Modern Trends of Organic Chemistry in Russian Universities. Russ. J. Org. Chem. 2018. V. 54. N 2. P. 153-371. DOI: 0.1134/S107042801802001X.

Quintans-Júnior, Silva L.J., Quintans D.A., Araújo J.S., Guimarães A., Araújo A.G., Araujo R.A., Souza D.A., Gutierrez M.F., Filho S.J., Almeida J.M. Anticonvulsant property of N-salicyloyltryptamine: evidence of enhance of central GABAergic neurotransmission. J. Epilepsy Clin. Neurophys. 2009. N 15. P. 165-168. DOI: 10.1590/S1676-26492009000400005.

Nurkenov A., Satpaeva Zh.B., Kulakov I.V., Akhmetova S.B., Zhaugasheva S.K. Synthesis and antimicrobial activity of o- and p-hydroxybenzoic acid thiosemicarbazides. Zhurn. Obshch. Khim. 2012. N 82. P. 668-671 (in Russian). DOI: 10.1134/S107036321204010X.

Min D., Han M.H., Lee S., Jung M. First Synthesis of Novel Aminophenyl Pyridinium-5-(hydroxybenzoyl)-hydrazonomethyl-2-oxothiazol-3-ide Derivatives and Evaluation of Their Anticancer Activities. Chem. Pharm. Bull. (Tokyo). 2015. V. 63. N 10. P. 843-847. DOI: 10.1248/cpb.c15-00441.

Fan X., Li J., Deng X., Lu Y., Feng Y., Ma S., Wen H., Zhao Q., Tan W., Shi T., Wang Z. Design, synthesis and bioactivity study of N-salicyloyl tryptamine derivatives as multifunctional agents for the treatment of neuroinflammation. Eur. J. Med. Chem. 2020. V. 193. 112217. DOI: 10.1016/j.ejmech.2020.112217.

Nesterkina M., Rakipov I., Fedorova E., Kravchenko I. Anticonvulsant activity of substituted benzaldehyde salicyloyl hydrazones against ptz and mes induced seizures. Pharmacology on line. 2019. V. 3. P. 213-220.

Brel’ A.K., Lisina S.V. Study of the reaction of hydroxybenzoyl chlorides and their derivatives with imid-azole. Zhurn. Org. Khim. 2019. V. 55. P. 592–597 (in Russian). DOI: 10.1134/S1070428019050026.

Djurendić E., Dojčinović-Vujašković S., Sakač M., Jovin E., Kojić V., Bogdanovic G., Klisurić O., Stanković S., Lazar D., Fabian L., Penov Gaši K. X-ray structural analysis, antioxidant and cytotoxic activity of newly syn-thesized salicylic acid derivatives. Struct. Chem. 2010. N 21. P. 67-78. DOI: 10.1007/s11224-009-9524-y.

Gajcy K., Lochyński S., Librowski T. A role of GABA analogues in the treatment of neurological diseases. Curr. Med. Chem. 2010. N 17. P. 2338-2347. DOI: 10.2174/09298671 0791698549.

https://pharmaexpert.ru/PASSOnline/index.php

Filimonov D., Druzhilovskiy D., Lagunin A., Gloriozova T., Rudik A., Dmitriev A., Pogodin P., Poroikov V. Computeraided prediction of biological activity spectra for chemical compounds: opportunities and limita-tions. Biomed. Chem.: Res. Meth. 2018. V. 1. N. 1. e00004. DOI: 10.18097/ bmcrm00004.

Litvinov R.A., Vasil’ev P.M., Brel’ A.K., Lisina S.V. Frontier molecular orbital energies as descriptors for pre-diction of antiglycating activity of N-hydroxybenzoyl-substituted thymine and uracil. Pharm. Chem. J. 2021. V. 55. N 7. P. 648–654. DOI: 10.30906/0023-1134-2021-55-7-18-24.

Brel A.K., Budaeva J.N., Lisina S.V., Marakhovskaya A.D. Experience in the synthesis of hydroxybenzoic acid derivatives. Izv. RAN. Ser. Khim. 2022. V. 71. N 11. P. 2335–2341 (in Russian). DOI: 10.1007/s11172-022-3660-6.

Mironov A.N. Guidelines for conducting preclinical stud-ies of drugs. M.: Grif i K. 2012. 944 p. (in Russian).

Belenky M.L. Elements of quantitative evaluation of the pharmacological effect. L.: Medgiz. 1963. 146 p. (in Rus-sian).

Siutkina A.I., Chashchina S.V., Makhmudov R.R., Novikova V.V., Igidov N.M., Chernov I.N. Synthesis, analgesic and antimicrobial activity of N-hetarylamides of 2-(2-(diarylmethylene)hydrazono)-5,5-dimethyl-4-oxohexanoic acid. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 3. P. 74-82. DOI: 10.6060/ivkkt.20226503.6522.

Rasoolijazi H., Azad N., Joghataei M.T., Kerdari M., Nikbakht F., Soleimani M. The Protective Role of Carno-sic Acid against Beta-Amyloid Toxicity in Rats. Sci. World J. 2013. 917082. DOI: 10.1155/2013/917082.

Di Leo G., Sardanelli F. Statistical significance: p value, 0.05 threshold, and applications to radiomics-reasons for a conservative approach. Eur. Radiol. Exp. 2020. V. 4. N 18. DOI: 10.1186/s41747-020-0145-y.

Brígido H.P.C., Varela E.L.P., Gomes A.R.Q, Bastos M.L.C., Feitosa A., Marinho A.M., Carneiro L.A., Coe-lho-Ferreira M.R., Dolabela M.F., Percário S. Evalua-tion of acute and subacute toxicity of ethanolic extract and fraction of alkaloids from bark of Aspidosperma nitidum in mice. Sci. Rep. 2021. V. 11. 18283. DOI: 10.1038/s41598-021-97637-1.

Puerstinger G., Paeshuyse J., De Clercq E., Neyts J. Antiviral 2,5-disubstituted imidazo[4,5-c]pyridines: From anti-pestivirus to antihepatitis C virus activity. Bioorg. Med. Chem. Lett. 2007. V. 17. N 2. P. 390-393. DOI: 10.1016/ j.bmcl.2006.10.039.

Gu S.X., Zhu Y.Y., Chen F.E., Balzarini J., De Clercq E., Pannecouque C. Structural modification of diarylpy-rimidine derivatives as HIV-1 reverse transcriptase inhibi-tors. Med. Chem. Res. 2015. V. 24. P. 220–225. DOI: 10.1007/ s00044-014-1119-5.

Adan A., Kiraz Y., Baran Y. Cell proliferation and cytotoxicity assays. Curr. Pharm. Biotechnol. 2016. V. 17. N 14. P. 1213-1221. DOI: 10.2174/1389201017666160808160513.

Published
2024-01-27
How to Cite
Brel, A. K., Lisina, S. V., & Budaeva, Y. N. (2024). N-SALICYLOYL AMIDES AND THEIR SALTS: SYNTHESIS, BIOLOGICAL ACTIVITY AND TOXICITY. ChemChemTech, 67(3), 103-110. https://doi.org/10.6060/ivkkt.20246703.6915
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)