CARBON NANOSTRUCTURES OBTAINING FROM POLYMER MATERIALS

  • Aleksandr N. Zaritovskii L.M. Litvinenko Institute of Physical Organic and Coal Chemistry
  • Elena N. Kotenko L.M. Litvinenko Institute of Physical Organic and Coal Chemistry
  • Svetlana V. Grishchuk L.M. Litvinenko Institute of Physical Organic and Coal Chemistry https://orcid.org/0009-0006-0103-1898
Keywords: polymer materials, carbon nanostructures, microwave treatment, recycling

Abstract

As part of the expansion of raw material base used in the development of technological and productive methods for the synthesis of carbon nanostructures (CNS) and solving the problem of environmentally friendly and economical polymer recycling, the results of investigation of microwave (MW) catalytic pyrolysis of macromolecular compounds from the range of polystyrene, polypropylene, polyethylene terephthalate, polyvinyl alcohol are presented. The information about existing approaches to solving these problems is briefly considered, and the prospects for MW processing of polymers are shown. The process was carried out by microwave treatment of a mixture of polymer raw materials acting as a carbon donor and substances-precursors of metal catalysts – cobalt and nickel compounds, their mixtures, as well as metal iron and nickel. Graphite and carbon fiber were used as temperature regulator. Experiments have demonstrated that effective conversion of the studied compounds occurs only in the presence of MW energy absorbers-converters, regardless of the nature of metal catalyst precursor. According to electron microscopy data, the resulting materials are a mixture of carbon nanostructures of disordered morphology with the predominant content of carbon nanotubes (CNTs) in the reaction products for experiments with polystyrene, polypropylene and polyethylene terephthalate. The use of polypropylene and polyvinyl alcohol leads to the production of carbon nanostructures containing only a small amount of CNTs. X-ray phase analysis data confirm the formation of multi-walled carbon nanotubes as the main structural component of the obtained carbon nanomaterials. It has been suggested that transformation pathways of the investigated hydrocarbons are similar, despite the difference in pyrolysis temperatures, which may be related to the simultaneous processes of polymer cracking, carbonization of decomposition products and CNS synthesis due to the rapid growth of reaction mass temperature during microwave treatment. The efficiency of different precursors of catalytic systems based on transition metals in the processes examined is substantiated. It has been shown that the high carbon content in feedstock promotes the formation of carbon nanostructures, but is not decisive for carbon nanotubes obtaining.

For citation:

Zaritovskii A.N., Kotenko E.N., Grishchuk S.V. Carbon nanostructures obtaining from polymer materials. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 5. P. 99-106. DOI: 10.6060/ivkkt.20246705.6957.

References

Williams P.T. Hydrogen and Carbon Nanotubes from Pyrolysis-Catalysis of Waste Plastics: A Review. Waste Bi-omass Valorization. 2021. V. 12. N 1. P. 1-28. DOI: 10.1007/s12649-020-01054-w.

Ren S., Xu X., Hu K., Tian W., Duan X., Yi J., Wang S. Structure-oriented conversions of plastics to carbon nano-materials. Carbon Res. 2022. V. 1. N 1. Art. 15. DOI: 10.1007/ s44246-022-00016-2.

Kovaleva N.Yu., Raevskaya E.G., Roshchin A.V. Plastic waste pyrolysis – a review. Khim. Bezopasnost. 2020. V. 4. N 1. P. 48-79 (in Russian). DOI: 10.25514/CHS.2020.1.17004.

Gong J., Chen X., Tang T. Recent progress in controlled carbonization of (waste) polymers. Prog. Polym. Sci. 2019. V. 94. P. 1-32. DOI: 10.1016/j.progpolymsci.2019.04.001.

Wong S.L., Ngadi N., Abdullah T.A.T., Inuwa I.M. Cur-rent state and future prospects of plastic waste as source of fuel: A review. Renew. Sust. En. Rev. 2015. V. 50. P. 1167-1180. DOI: 10.1016/j.rser.2015.04.063.

Teptereva G.A., Pakhomov S.I., Chetvertneva I.A., Karimov E.H., Egorov M.P., Movsumzade E.M., Evstigneev E.I., Vasiliev A.V., Sevastyanova M.V., Voloshin A.I., Nifantyev N.E., Nosov V.V., Dokichev V.A., Babaev E.R., Rogovina S.Z., Berlin A.A., Fakhreeva A.V., Baulin O.A., Kolchina G.Yu., Voronov M.S., Staroverov D.V., Kozlovsky I.A., Kozlovsky R.A., Tarasova N.P., Zanin A.A., Krivoborodov E.G., Karimov O.Kh., Flid V.R., Loginova M.E. Renewable natural raw materials. Structure, properties, application prospects. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 9. P. 5-122 (in Russian). DOI: 10.6060/ivkkt.20216409.6465.

Arshad H., Sulaiman S.A., Hussain Z., Naz Y., Basrawi F. Microwave assisted pyrolysis of plastic waste for pro-duction of fuels: a review. Proceed. UTP-UMP SES 2017. MATEC Web Conf. 2017. V. 131. Art. 02005. DOI: 10.1051/matecconf/201713102005.

Frediani P., Frediani M. Mixed or Contaminated Waste Plastic Recycling through Microwave - Assisted Pyrolysis. In: Recent Perspectives in Pyrolysis Research. Ed. by M. Bartoli, M. Giorcelli. IntechOpen. 2021. Chap. 18. 23 p. DOI: 10.5772/intechopen.100179.

Jiang H., Liu W., Zhang X., Qiao J. Chemical Recycling of Plastics by Microwave-Assisted High-Temperature Py-rolysis. Global Challenges. 2020. V. 4. N 4. Art. 1900074. DOI: 10.1002/gch2.201900074.

Aishwarya K.N., Sindhu N. Microwave Assisted Pyrolysis of Plastic Waste. Procedia Technol. 2016. V. 25. P. 990-997. DOI: 10.1016/j.protcy.2016.08.197.

Russell A.D., Antreou E.I., Lam S.S., Ludlow-Palafox C., Chase H.A. Microwave-assisted pyrolysis of HDPE using an activated carbon bed. RSC Adv. 2012. V. 2. N 17. P. 6756-6760. DOI: 10.1039/c2ra20859h.

Mohan B.R., Bhalla C. Studies on Microwave Pyrolysis of Polypropylene. IJERT. 2016. V. 5. N 11. P. 108-116. DOI: 10.17577/IJERTV5IS110096.

Rex P., Masilamani I.P., Miranda L.R. Microwave pyrolysis of polystyrene and polypropylene mixtures using different activated carbon from biomass. J. Energy Inst. 2020. V. 93. N 5. P. 1819-1832. DOI: 10.1016/j.joei.2020.03.013.

Zeynalov E.B., Agaguseynova M.M., Salmanova N.I. Effect of nanocarbon additives on stability of polymer composites. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 11. P. 4-12. DOI: 10.6060/ ivkkt.20206311.6213.

Zhou N., Dai L., Lv Y., Li H., Deng W., Guo F., Chen P., Lei H., Ruan R. Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production. Chem. Eng. J. 2021. V. 418. Art. 129412. DOI: 10.1016 /j.cej.2021.129412.

Estahbanati M.R.K., Kong X.Y., Eslami A., Soo H.S. Current Developments in the Chemical Upcycling of Waste Plastics Using Alternative Energy Sources. ChemSusChem. 2021. V. 14. N 19. P. 4152-4166. DOI: 10.1002/cssc.202100874.

Undri A., Rosi L., Frediani M., Frediani P. Microwave pyrolysis of polymeric materials. In: Microwave Heating. Ed. by U. Chandra. InTech. 2011. Chap. 10. P. 207-232. DOI: 10.5772/24008.

Motasemi F., Afzal M.T. A review on the microwave-assisted pyrolysis technique. Renew. Sustain. En. Rev. 2013. V. 28. P. 317-330. DOI: 10.1016/j.rser.2013.08.008.

Fernandez Y., Arenillas A., Menendez J.A. Microwave Heating Applied to Pyrolysis. In: Advances in Induction and Microwave Heating of Mineral and Organic Materials. Ed. by S. Grundas. Part 1. Chap. 31. InTech. 2011. P. 723-752. DOI: 10.5772/13548.

Jie X., Li W., Slocombe D., Gao Y., Banerjee I., Gonza-lez-Cortes S., Yao B., AlMegren H., Alshihri S., Dilworth J., Thomas J., Xiao T., Edwards P. Microwave-initiated Catalytic Deconstruction of Plastic Waste into Hydrogen and High-Value Carbons. Nat. Catal. 2020. V. 3. P. 902-912. DOI: 10.1038/s41929-020-00518-5.

Lopez G., Santamaria L. Microwaving plastic into hydrogen and carbons. Nat. Catal. 2020. V. 3. P. 861-862. DOI: 10.1038/s41929-020-00538-1.

Kure N., Daniel I.H., Machu B.U., Bello I.A., Asnawi M. Сomparative study on the syntheses of carbon nano-materials using polyethylene and risk husk as carbon precursor. FUDMA J. Sci. (FJS). 2020. V. 4. N 3. P. 731-734. DOI: 10.33003/fjs-2020-0403-315.

Kure N., Hamidon M.N., Azhari S., Mamat N.S., Yusoff H.M., Isa B.M., Yunusa Z. Simple Microwave-Assisted Synthesis of Carbon Nanotubes Using Polyethylene as Carbon Precursor. J. Nanomater. 2017. V. 2017. Art. ID 2474267. DOI: 10.1155/2017/2474267.

Takagi Y., Tauchi L., Nguyen-Tran H.-D., Ohta T., Shimizu M., Ohta K. Development of a novel method to synthesize carbon nanotubes from granulated polystyrene and nickel nanoparticles by microwave heating. J. Mater. Chem. 2011. V. 21. P. 14569-14574. DOI: 10.1039/c1jm12069g.

Ohta T., Ito T., Shimizu M., Tauchi L., Nguyen-Tran H.-D., Park J.-C., Kim B.-S., Kim I.-S., Ohta K. Development of novel synthetic method of carbon nanotubes from electrospun polystyrene fibers by using microwave heat-ing. Polym. Adv. Technol. 2011. V. 22. P. 2653-2658. DOI: 10.1002/pat.1723.

Zakaria N.Z.J., Rozali S., Mubarak N. M., Ibrahim S. A review of the recent trend in the synthesis of carbon na-nomaterials derived from oil palm by-product materials. Biomass Convers. Biorefin. 2022. P. 1-31. DOI: 10.1007/s13399-022-02430-3.

Kumar R., Singh R.K., Singh D.P. Natural and waste hydrocarbon precursors for the synthesis of carbon based nanomaterials: Graphene and CNTs. Renew. Sust. En. Rev. 2016. V. 58. P. 976-1006. DOI: 10.1016/j.rser.2015.12.120.

Deng J., You Y., Sahajwalla V., Joshi R.K. Transforming waste into carbon-based nanomaterials. Carbon. 2016. V. 96. P. 105-115. DOI: 10.1016/j.carbon.2015.09.033.

Mubarik S., Qureshi N., Sattar Z., Shaheen A., Kalsoom A., Imran M., Hanif F. Synthetic Approach to Rice Waste-Derived Carbon-Based Nanomaterials and Their Applications. Nanomanufacturing. 2021. V. 1. N 3. P. 109-159. DOI: 10.3390/nanomanufacturing1030010.

Yoon D.-M., Yoon B.-J., Lee K.-H., Kim H.S., Park C.G. Synthesis of carbon nanotubes from solid carbon sources by direct microwave irradiation. Carbon. 2006. V. 44. N 7. P. 1339–1343. DOI: 10.1016/j.carbon.2005.12.008.

Ethaib S., Omar R., Kamal S.M.M., Biak D.R.A., Zubaidi S.L. Microwave-Assisted Pyrolysis of Biomass Waste: A Mini Review. Processes. 2020. V. 8. N 9. Art. 1190. DOI: 10.3390/pr8091190.

Omoriyekomwan J.E., Tahmasebi A., Zhang J., Yu J. Formation of hollow carbon nanofibers on bio-char during microwave pyrolysis of palm kernel shell. Energy Convers. Manage. 2017. V. 148. P. 583-592. DOI: 10.1016/j.enconman. 2017.06.022.

Das R., Abd Hamid S.B., Ali M.E., Ramakrishna S., Wu Y. Carbon Nanotubes Characterization by X-ray Powder Diffraction – A Review. Curr. Nanosci. 2015. V. 11. N 1. P. 23-35. DOI: 10.2174/1573413710666140818210043.

Gurin V.А., Gabelkov S.V., Poltavtsev N.S., Gurin I.V., Phursov S.G. Crystal structure of pyrographite and catalytically deposited carbon. Vopr. Atom. Nauki Tekh. Fizika Radiats. Povrezhd. Radiats. Materialoved. 2006. V. 89. N 4. P. 195-199 (in Russian).

Futaba Don N., Yamada T., Kobashi K., Yumura M., Hata K. Macroscopic Wall Number Analysis of Single-Walled, Double-Walled, and Few-Walled Carbon Nano-tubes by X-ray Diffraction. JACS. 2011. V. 133. N 15. P. 5716-5719. DOI: 10.1021/ja2005994.

Published
2024-04-04
How to Cite
Zaritovskii, A. N., Kotenko, E. N., & Grishchuk, S. V. (2024). CARBON NANOSTRUCTURES OBTAINING FROM POLYMER MATERIALS. ChemChemTech, 67(5), 99-106. https://doi.org/10.6060/ivkkt.20246705.6957
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)

Most read articles by the same author(s)