ACIDIC AND CATALYTIC PROPERTIES OF Mg-CONTAINING ZEOLITE CATALYST IN THE PROPANE CONVERSION TO OLEFINIC HYDROCARBONS

  • Anton A. Vosmerikov Institute of Petroleum Chemistry of SB of the RAS
  • Ludmila N. Vosmerikova Institute of Petroleum Chemistry of SB of the RAS
  • Alexander V. Vosmerikov Institute of Petroleum Chemistry of SB of the RAS
Keywords: propane, zeolite, olefins, modification, acidity

Abstract

In this work, we studied the conversion of propane to olefinic hydrocarbons on a zeolite catalyst of the ZSM-5 structural type modified with magnesium. Lower olefins (С24) are one of the key raw materials for petrochemical processes, in particular in the production of polymeric materials (polyethylene, polypropylene), as well as various valuable products: ethylene-butene copolymers, methyl-tert-butyl ether, acrylonitrile, etc. Constant growth in demand for lower olefins is largely determined by the rapid increase in the consumption of polyethylene and polypropylene and the expansion of their technological application. The catalytic conversion of lower alkanes to olefinic hydrocarbons using zeolite-containing systems is one of the promising methods for obtaining lower monomers. The acidic properties of Mg-containing zeolite catalysts were studied by thermally programmed desorption of ammonia, and it was found that the catalysts differ from each other in the distribution and ratio of acid sites of different types. It has been shown that the introduction of magnesium oxide into the composition of the catalyst leads to an increase in the activity and selectivity of the catalyst with respect to the formation of olefinic hydrocarbons from propane. The dependence of the activity and selectivity of catalysts on the content of magnesium in them has been established. It was found that the maximum amount of olefinic hydrocarbons is formed in the presence of zeolite containing 4.0% magnesium oxide. A study was made of the time of stable operation of the most active catalytic system in the process of obtaining olefinic hydrocarbons from propane. It is shown that after 96 h of continuous operation of the 4.0 % MgO/HSZ-100 catalyst, the selectivity for the formation of olefinic hydrocarbons is more than 68% at a propane conversion of 45%.

For citation:

Vosmerikov A.A., Vosmerikova L.N., Vosmerikov A.V. Acidic and catalytic properties of Mg-containing zeolite catalyst in the propane conversion to olefinic hydrocarbons. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 11. P. 42-49. DOI: 10.6060/ivkkt.20236611.2t.

References

Sattler J.J., Ruiz-Martinez J., Santillan-Jimenez E., Weckhuysen B.M. Catalytic dehydrogenation of light al-kanes on metals and metal oxides. Chem Rev. 2014. V. 114. N 20. P. 10613-10653. DOI: 10.1021/cr5002436.

Ren T., Patel M., Blok K. Energy use in steam cracking and alternative processes. Energy. 2006. V. 31. N 4. P. 425-451. DOI: 10.1016/j.energy.2005.04.001.

Chen S., Chang X., Sun G.D., Zhang T.T., Xu, Y.Y., Wang Y., Pe, C.L., Gong J.L. Propane dehydrogenation: Catalyst development, new chemistry, and emerging technologies. Chem. Soc. Rev. 2021. V. 50. P. 3315-3354. DOI: 10.1039/D0CS00814A.

Cheng Z., Qian S. Research Progress on Propylene Preparation by Propane Dehydrogenation. Molecules. 2023. V. 28. N 8. P. 3594-3607. DOI: 10.3390/molecules28083594.

Zeeshan N. Light alkane dehydrogenation to light olefin technologies: A comprehensive review. Rev. Chem. Eng. 2015. V. 31. P. 413-436. DOI: 10.1515/revce-2015-0012.

Kayumov N.A., Nazarov A.A., Ponikarov S.I., Vilohina P.V. Modern industrial technological processes of hydro-carbon dehydrogenation and their instrumentation. Vestn. Kazan. Tekhnol. Univ. 2013. V. 16. N 15. P. 303-308 (in Russian).

Amghizar I., Vandewalle L.A., Van Geem K.M., Marin G.B. New trends in olefin production. Engineering. 2017. V. 3. P. 171-178. DOI: 10.1016/J.ENG.2017.02.006.

Akah A., Al-Ghrami M. Maximizing propylene production via FCC technology. Appl. Petrochem. Res. 2015. V. 5. N 4. P. 377-392. DOI: 10.1007/s13203-015-0104-3.

Sattler J.J.H.B., Ruiz-martinez J., Santillan-Jimenez E., Weckhuysen B.M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 2014. V. 114. P. 10613-10653. DOI: 10.1021/cr5002436.

Monai M., Gambino M., Wannakao S., Weckhuysen B.M. Propane to olefins tandem catalysis: a selective route towards light olefins production. Chem. Soc. Rev. 2021. V. 50. P. 11503-1529. DOI: 10.1039/D1CS00357G.

Belov G.P. Catalytic synthesis of higher olefins from ethylene. Kataliz Promsti. 2014. N 3. Р. 13-19 (in Rus-sian).

Sakhibgareev S.R., Tsadkin M.A., Badikova A.D., Gumerova E.F. Catalysts for destruction of hydrocarbon raw materials based on barium chloride. ChemChemTech [Izv.Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 9. P. 64-73. DOI: 10.6060/ivkkt.20226509.6535.

Vosmerikova L.N., Vosmerikov A.A., Vosmerikov A.V. Conversion of propane to olefinic hydrocarbons over ze-olite catalysts modified with manganese. Neftegazokhimiya. 2022. V. 4. P. 51-56 (in Russian). DOI: 10.24411/2310-8266-2022-4-51-56.

Vafi L., Karimzadeh R. Effect of phosphorus on me-thane production in LPG catalytic cracking over modi-fied-structure ZSM-5. J. Nat. Gas. Sci. Eng. 2015. V. 27. P. 751-756. DOI: 10.1016/j.jngse.2015.09.019.

Shkuropatov A.V., Knyazeva E.E., Ponomarev O.A., Ivanova I.I. Synthesis of hierarchical MWW zeolites and their catalytic properties in petrochemical processes (review). Petrol. Chem. 2018. V. 58. N 10. P. 815-826. DOI: 10.1134/S0965544118100158.

Lü Q., Lin X., Wang L., Gao J., Bao X. On-stream stability enhancement of HZSM-5 based fluid catalytic cracking naphtha hydro-upgrading catalyst via magnesium modification. Catal. Commun. 2016. V. 83. P. 31-34. DOI: 10.1016/j.catcom.2016.05.005.

Kosinov N., Liu, C., Hensen E.J.M., Pidko E.A. Engineering of Transition Metal Catalysts Confined in Zeo-lites. Chem. Mater. 2018. V. 30. P. 3177-3198. DOI: 10.1021/acs.chemmater.8b01311.

Chen C., Zhang Q., Meng Z., Li C., Shan H. Effect of magnesium modification over H-ZSM-5 in methanol to propylene reaction. Appl. Petrochem. Res. 2015. V. 5. P. 277-284. DOI: 10.1007/s13203-015-0129-7

Delin Y., Yu S., Aihua X., Chuanfu W., Ping M., Qi S. Tuning of magnesium distribution in ZSM-5 via different impregnation methods and its effect on methanol to propene reaction. Ind. Eng. Chem. Res. 2019. V. 50. N 13. P. 5112-5120. DOI: 10.1021/acs.iecr.8b04434.

Vosmerikova L.N., Markova A.A., Vosmerikov A.A., Vosmerikov A.V. Reception of olefinic hydrocarbons from propane on zeolites of type ZSM-5 with different silicamodule. Neftepererab.Neftekhimiya. Nauch.-Tekhn. Dostizh. Pered. Opyt. 2020. N 5. P. 26-31 (in Russian). DOI: 10.1063/5.0035063.

Corma A. Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chem. Rev. 1995. V. 95. N 3. P. 559-614. DOI: 10.1021/cr00035a006.

Liu H., Li Y., Shen W., Bao X., Xu Y. Methane dehydroaromatization over Mo/HZSM-5 catalysts in the ab-sence of oxygen: effects of silanation in HZSM-5 zeolite. Catal. Today. 2004. V. 93. P. 65-73. DOI: 10.1016/j.cattod.2004.05.014.

Hadjiivanov K. Chapter two – Identification and Characterization of Surface Hydroxyl Groups by Infrared Spectroscopy. Adv. Catal. 2014. V. 57. P. 99-318. DOI: 10.1016/B978-0-12-800127-1.00002-3.

Zhai D., Li Y., Zheng H., Zhao L., Gao J., Xu C., Shen B. A firstprinciples evaluation of the stability, accessibil-ity, and strength of Brønsted acid sites in zeolites. J. Catal. 2017. V. 352. P. 627-637. DOI: 10.1016/j.jcat.2017.06.035.

Brovko R.V., Lakina M.E., Sulman M.G., Doluda V.Yu. Study of the effect of H-ZSM-5 zeolite acidity on the process of catalytic transformation of n-butanol into hydrocarbons. ChemChemTech [Izv.Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 4. P. 87-92. DOI: 10.6060/ivkkt.20226504.6509.

Published
2023-09-29
How to Cite
Vosmerikov, A. A., Vosmerikova, L. N., & Vosmerikov, A. V. (2023). ACIDIC AND CATALYTIC PROPERTIES OF Mg-CONTAINING ZEOLITE CATALYST IN THE PROPANE CONVERSION TO OLEFINIC HYDROCARBONS. ChemChemTech, 66(11), 42-49. https://doi.org/10.6060/ivkkt.20236611.2t
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)