MOLECULAR STRUCTURE AND VIBRATION SPECTRA OF PIVALIC ACID

  • Alexander E. Pogonin Ivanovo State University of Chemistry and Technology
  • Oleg A. Pimenov Ivanovo State University of Chemistry and Technology
  • Yuriy A. Zhabanov Ivanovo State University of Chemistry and Technology
Keywords: pivalic acid, vibration spectra, quantum chemical calculations

Abstract

The metal carboxylates such as metal pivalates (salts of the pivalic acid (CH3)3CCOOH) attract a great interest as most promising precursors for chemical vapor deposition (CVD) technology. The possibility to use these substances in the CVD technology is specified by their good thermal stability and high volatility. For modeling of chemical reactions with metal pivalates in the gas-phase and the data on molecular structure will be very useful, in particularly information about effect of central metal ion to geometry of pivalic ligands. In the frame of this task the structures of metal pivalate molecules and pivalic acid (H(piv)) in a gas phase should be finding. The aim of present work is theoretical investigation of the geometry and IR-spectrum of H(piv) using density functional theory (DFT) methods. All calculations were performed using the Gaussian 03 program. The optimization of geometry and quadratic force field calculations were carried out using DFT functionals B3LYP, PBE, PBE0 and BP86 with correlation-consistent triple-ζ valence cc-pVTZ basis sets for O, C, and H. Appropriate assignment of vibrational modes was carried out by the potential energy distribution (PED) analysis among internal coordinates using the SHRINK program. According to DFT computations, the H(piv) molecule has an equilibrium structure of Cs symmetry with Гvib=26A'+19A''. The theoretical and experimental IR-spectra are satisfactorily agreed. The comparison of the ten intensities of highest bands in spectra allowed determining linear correlation between peaks position in experimental and modeling IR-spectra. It should be note the complicated composition of vibrational modes.

References

Altsybeev A.E., Kuzmina N.P., Malkerova I.P., Alikha-nyan A.S., Korsakov I.E. Zhurn. Neorg. Khimii. 2006. V. 51. N 1. P. 1-6 (in Russian).

Kamkin N.N., Kuzmina L.G., Kayumova D.B., Yaryshev N.G., Dement'ev A.I., Alikhanyan A.S. Zhurn. Neorg. Khimii. 2012. V. 57. N 9. P. 1350-1354 (in Russian).

Kamkin N.N., Kayumova D.B., Yaryshev N.G., Demen-t’yev A.I., Malkerova I.P., Alikhanyan A.S. Zhurn. Neorg. Khimii. 2012. V. 57. N 10. P. 1392-1396 (in Russian).

Lukyanova V.A., Papina T.S., Didenko K.V., Alikhanyan A.S. J. Therm. Anal. Calorimetry. 2008. V. 92. N 3. P. 743-746.

Alikhanyan A.S., Didenko K.V., Girichev G.V., Giricheva N.I., Pimenov O.A., Shlykov S.A., Zhurko G.A. Struct. Chem. 2011. V. 22. N 2. P. 401-409.

Sugiura T., Yoshikawa H., Awaga K. Inorg. Chem. 2006. V. 45. N 19. P. 7584-7586.

Kiselyeva E.A., Byesyedin D.V., Koryenyev Yu.M. Zhurn. Phys. Khimii. 2005. V. 79. N 9. P. 1658-1661 (in Russian).

Pimenov O.A., Zhabanov Y.A., Pogonin A.E., Blomeyer S., Puchkov B.V. Struct. Chem. 2015. V. 26. N 5-6. P. 1443-1450.

Maréchal Y. J. Chem. Phys. 1987. V. 87. N 11. P. 6344-6353.

Hill I.R., Levin I.W. J. Chem. Phys. 1979. V. 70. N 2. P. 842-851.

Eliason T.L., Havey D.K., Vaida V. Chem. Phys. Lett. 2005. V. 402. N 1–3. P. 239-244.

Vener M.V., Kühn O., Bowman J.M. Chem. Phys. Lett. 2001. V. 349. N 5–6. P. 562-570.

Fernández L.E., Marigliano A.C.G., Varetti E.L. Vibrat. Spectrosc. 2005. V. 37. N 2. P. 179-187.

Olbert-Majkut A., Ahokas J., Lundell J., Pettersson M. Chem. Phys. Lett. 2009. V. 468. N 4–6. P. 176-183.

Reva I.D., Plokhotnichenko A.M., Radchenko E.D., Sheina G.G., Blagoi Y.P. Spectrochim. Acta. 1994. V. 50A. N 6. P. 1107-1111.

Zelsmann H.R., Mielke Z., Marechal Y. J. Molec. Struct. 1990. V. 237. P. 273-283.

Burneau A., Genin F., Quiles F. Phys. Chem. Chem. Phys. 2000. V. 2. N 22. P. 5020-5029.

Sliznev V.V., Pogonin A.E., Ishenko A.A., Girichev G.V. Makrogeterotsikly. 2014. V. 7. N 1. P. 60-72 (in Russian).

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Vreven J.T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas Ö., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A. Gaussian 03, Revision B.03, 2003, Gaussian Inc. Pittsburgh PA.

Becke A.D. J. Chem. Phys. 1993. V. 98. P. 5648-5652.

Adamo C., Barone V. J. Chem. Phys. 1999. V. 110. P. 6158-6169.

Perdew J.P., Burke K., Ernzerhof M. Phys. Rev. Lett. 1996. V. 77. P. 3865-3868.

Perdew J.P., Burke K., Ernzerhof M. Phys. Rev. Lett. 1997. V. 78. P. 1396.

Perdew J.P. Phys. Rev. B. 1986. V. 33. N 12. P. 8822-8824.

Becke A.D. Phys. Rev. A. 1988. V. 38. N 6. P. 3098-3100.

Dunning J. J. Chem. Phys. 1989. V. 90. N 2. P. 1007-1024.

Zhurko G.A., Zhurko D.A. // http://www.chemcraftprog.com/ index.html.

Sipachev V.A. J. Mol. Struct. (Theochem). 1985. V. 121. N 1-2. P. 143 – 151.

Sipachev V.A. Struct. Chem. 2000. V. 11. N 2. P. 167-172.

Sipachev V.A. J. Mol. Struct. 2001. V. 567-568. P. 67 – 72.

Published
2018-07-17
How to Cite
Pogonin, A. E., Pimenov, O. A., & Zhabanov, Y. A. (2018). MOLECULAR STRUCTURE AND VIBRATION SPECTRA OF PIVALIC ACID. ChemChemTech, 59(7), 17-22. https://doi.org/10.6060/tcct.20165907.5412
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)