MODIFICATION OF SURFACE OF DOUBLE WALL CARBON NANO TUBES BY FULLERENE C60
Abstract
The composite samples based on double-wall carbon nano tubes and fullerenes followed by laser treatment were prepared. XPS confirmed existence of essential contact between two components of the composite. The differential charging effect disappears after laser processing, which induces photopolymerization of fullerene clusters. The TEM showed close-packed continuous coating of cross-linked C60 clusters formed on the surface of nano tubes after laser irradiation.
References
Desselhaus M.S., Desselhaus G., Eklund P.S. Sci-ence of fullerenes and nanotubes. London: Academic Press. 1996. 965 p.
Rakov E.G. Nanotubes and fullerenes. M.: University book. Logos. 2006. 376 p. (in Russian)
Ruoff R.S., Ruoff A.L. Appl. Phys. Lett. 1991. V. 59. N 13. P. 1553‒1555. DOI: 10.1063/1.106280.
Ruoff R.S., Ruoff A.L. Nature. 1991. V. 350. N 6320. P. 663‒664. DOI: 10.1038/350653a0.
Trefilov V.I., Shchur D.V., Tarasov B.P., Shulga Yu. M., Chernogorenko A.V., Pishchuk V.K., Zaginaiychenko S.Yu. Fullerenes are a basis of future materials. Kiev: ADEF-Ukraina. 2001. 148 p. (in Russian).
Popov V.N. Mater. Sci. Engin. R. 2004. V. 43. N 2. P. 61‒102. DOI: 10.1016/j.mser.2003.10.001.
Rafii-Tabar H. Phys. Rep. 2004. V. 390. N 4‒5. P. 235‒452. DOI: 10.1016/j.physrep.2003.10.012.
Sheka E. Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics. CRC Press. 1 edition. 2011. 328 p.
Manna A.K., Pati, S.K. Chem.Phys.Chem. 2013. V. 14. N 9. P. 1844–1852. DOI: 10.1002/cphc.201300155.
Yu D., Park K., Durstock M., Dai L. J. Phys. Chem. Lett. 2011. V. 2. N 10. P.1113–1118. DOI: 10.1021/jz200428y.
Guerin H. J. Chim. Phys. 1998. V. 95. N 3. P. 561 -573. DOI: 10.1051/jcp:1998168
Smith R., Webb R.P. Proceedings: Mathematical and Physical Sciences. 1993. V. 441. N 1913. P. 495-499. DOI: 10.1098/rspa.1993.0075.
Shen C., Brozena A. H., Wang Y.H. Nanoscale. 2011. V. 3. N 2. P. 503-518. DOI: 10.1039/c0nr00620c.
Karaeva A.R., Khaskov M.A., Mitberg E.B., Kulnitskiy B.A., Perezhogin I.A., Ivanov L.A., Denisov V.N., Kiri-chenko A.N., Mordkovich V.Z. Fullerenes, Nanotubes and Carbon Nanostructures. 2012. V. 20. N 4-7. P. 411-418. DOI: 10.1080/1536383X.2012.655229.
Ivanov A.L., Mavrin B.N., Matveets Yu.A., Stepanov A.G., Chekalin S.V. Quantum Electronics. 1998. V. 28. N 8. P. 689-691. DOI: 10.1070/QE1998v028n08ABEH001295.
Masterov V.F. Sorosov Educ. J. 1997. N 1. P. 92-99.
Werner H., Wohlers M., Herein D., Bublak D., Blöcker J., Schlögl R., Reller A. Fullerenes, Nanotubes and Carbon Nanostructures. 1993. V. 1. N 2. P. 199 – 219. DOI: 10.1080/10641229308018363H.
Semenov K.N., Charykov N.A., Keskinov V.A., Poartman A.K., Blokhin A.A., Kopyrin A.A. J. Chem. Ens. Data. 2010. V. 55. N 1. P. 13-36. DOI: 10.1021/je900296s.
Zschoerper N.P., Katzenmaier V., Vohrer U., Haupt M., Oehr C., Hirth T. Carbon. 2009. V. 47. N 9. P. 2174 –2185. DOI: 10.1016/j.carbon.2009.03.059.
Kundu Sh., Wang Y., Xia W., Muhler M. J. Phys. Chem. C. 2008. V. 112. N 43. P. 16869–16878. DOI: 10.1021/jp804413a.
Li L., Yao X., Li H., Liu Zh., Ma W., Liang X. J. Chem. Eng. Japan. 2014. V. 47. N 1. P. 21–27. DOI: 10.1252/ jcej.13we193.
Ivanova T.M., Maslakov K.I., Savilov S.V., Ivanov A.S., Egorov A.V., Linko R.V., Lunin V.V. Rus. Chem. Bull. Inter. Edit. 2013. V. 62. N 3. P. 640-645. DOI: 10.1007/ s11172-013-0086-1.
Yu X., Hantsche H. Fresenius J Anal Chem. 1993. V. 346. N 1. P. 233-236. DOI: 10.1007/BF00321421.
Weaver J.H., Martins J.L., Komeda T., Chen Y., Ohno T.R., Kroll G.H., Troullier N. Phys. Rev. Lett. 1991. V. 66. N 13. P. 1741-1744. DOI: 10.1103/PhysRevLett.66.1741.
Umeyama T., Tezuka N., Fujita M., Hayashi S., Kadota N., Matano Y., Imahori H. Chem. Eur. J. 2008. V. 14. N 16. P. 4875-4885. DOI: 10.1002/chem.200702053