MODIFICATION OF SURFACE OF DOUBLE WALL CARBON NANO TUBES BY FULLERENE C60

  • Aida R. Karaeva Technological Institute for Superhard and Novel Carbon Materials
  • Ekaterina A. Zhukova Technological Institute for Superhard and Novel Carbon Materials
  • Sergei A. Urvanov Technological Institute for Superhard and Novel Carbon Materials
  • Boris R. Senatulin National University of Science and Technology "MISIS" (Moscow Institute of Steel and Alloys)
  • Elena A. Skryleva National University of Science and Technology "MISIS" (Moscow Institute of Steel and Alloys)
  • Vladimir Z. Mordkovich Technological Institute for Superhard and Novel Carbon Materials
Keywords: DWCNT, C60, composites, XPS, differential charging effect, oxidative modification, laser processing

Abstract

The composite samples based on double-wall carbon nano tubes and fullerenes followed by laser treatment were prepared. XPS confirmed existence of essential contact between two components of the composite. The differential charging effect disappears after laser processing, which induces photopolymerization of fullerene clusters.  The TEM showed close-packed continuous coating of cross-linked C60 clusters formed on the surface of nano tubes after laser irradiation.

References

Desselhaus M.S., Desselhaus G., Eklund P.S. Sci-ence of fullerenes and nanotubes. London: Academic Press. 1996. 965 p.

Rakov E.G. Nanotubes and fullerenes. M.: University book. Logos. 2006. 376 p. (in Russian)

Ruoff R.S., Ruoff A.L. Appl. Phys. Lett. 1991. V. 59. N 13. P. 1553‒1555. DOI: 10.1063/1.106280.

Ruoff R.S., Ruoff A.L. Nature. 1991. V. 350. N 6320. P. 663‒664. DOI: 10.1038/350653a0.

Trefilov V.I., Shchur D.V., Tarasov B.P., Shulga Yu. M., Chernogorenko A.V., Pishchuk V.K., Zaginaiychenko S.Yu. Fullerenes are a basis of future materials. Kiev: ADEF-Ukraina. 2001. 148 p. (in Russian).

Popov V.N. Mater. Sci. Engin. R. 2004. V. 43. N 2. P. 61‒102. DOI: 10.1016/j.mser.2003.10.001.

Rafii-Tabar H. Phys. Rep. 2004. V. 390. N 4‒5. P. 235‒452. DOI: 10.1016/j.physrep.2003.10.012.

Sheka E. Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics. CRC Press. 1 edition. 2011. 328 p.

Manna A.K., Pati, S.K. Chem.Phys.Chem. 2013. V. 14. N 9. P. 1844–1852. DOI: 10.1002/cphc.201300155.

Yu D., Park K., Durstock M., Dai L. J. Phys. Chem. Lett. 2011. V. 2. N 10. P.1113–1118. DOI: 10.1021/jz200428y.

Guerin H. J. Chim. Phys. 1998. V. 95. N 3. P. 561 -573. DOI: 10.1051/jcp:1998168

Smith R., Webb R.P. Proceedings: Mathematical and Physical Sciences. 1993. V. 441. N 1913. P. 495-499. DOI: 10.1098/rspa.1993.0075.

Shen C., Brozena A. H., Wang Y.H. Nanoscale. 2011. V. 3. N 2. P. 503-518. DOI: 10.1039/c0nr00620c.

Karaeva A.R., Khaskov M.A., Mitberg E.B., Kulnitskiy B.A., Perezhogin I.A., Ivanov L.A., Denisov V.N., Kiri-chenko A.N., Mordkovich V.Z. Fullerenes, Nanotubes and Carbon Nanostructures. 2012. V. 20. N 4-7. P. 411-418. DOI: 10.1080/1536383X.2012.655229.

Ivanov A.L., Mavrin B.N., Matveets Yu.A., Stepanov A.G., Chekalin S.V. Quantum Electronics. 1998. V. 28. N 8. P. 689-691. DOI: 10.1070/QE1998v028n08ABEH001295.

Masterov V.F. Sorosov Educ. J. 1997. N 1. P. 92-99.

Werner H., Wohlers M., Herein D., Bublak D., Blöcker J., Schlögl R., Reller A. Fullerenes, Nanotubes and Carbon Nanostructures. 1993. V. 1. N 2. P. 199 – 219. DOI: 10.1080/10641229308018363H.

Semenov K.N., Charykov N.A., Keskinov V.A., Poartman A.K., Blokhin A.A., Kopyrin A.A. J. Chem. Ens. Data. 2010. V. 55. N 1. P. 13-36. DOI: 10.1021/je900296s.

Zschoerper N.P., Katzenmaier V., Vohrer U., Haupt M., Oehr C., Hirth T. Carbon. 2009. V. 47. N 9. P. 2174 –2185. DOI: 10.1016/j.carbon.2009.03.059.

Kundu Sh., Wang Y., Xia W., Muhler M. J. Phys. Chem. C. 2008. V. 112. N 43. P. 16869–16878. DOI: 10.1021/jp804413a.

Li L., Yao X., Li H., Liu Zh., Ma W., Liang X. J. Chem. Eng. Japan. 2014. V. 47. N 1. P. 21–27. DOI: 10.1252/ jcej.13we193.

Ivanova T.M., Maslakov K.I., Savilov S.V., Ivanov A.S., Egorov A.V., Linko R.V., Lunin V.V. Rus. Chem. Bull. Inter. Edit. 2013. V. 62. N 3. P. 640-645. DOI: 10.1007/ s11172-013-0086-1.

Yu X., Hantsche H. Fresenius J Anal Chem. 1993. V. 346. N 1. P. 233-236. DOI: 10.1007/BF00321421.

Weaver J.H., Martins J.L., Komeda T., Chen Y., Ohno T.R., Kroll G.H., Troullier N. Phys. Rev. Lett. 1991. V. 66. N 13. P. 1741-1744. DOI: 10.1103/PhysRevLett.66.1741.

Umeyama T., Tezuka N., Fujita M., Hayashi S., Kadota N., Matano Y., Imahori H. Chem. Eur. J. 2008. V. 14. N 16. P. 4875-4885. DOI: 10.1002/chem.200702053

Published
2018-07-17
How to Cite
Karaeva, A. R., Zhukova, E. A., Urvanov, S. A., Senatulin, B. R., Skryleva, E. A., & Mordkovich, V. Z. (2018). MODIFICATION OF SURFACE OF DOUBLE WALL CARBON NANO TUBES BY FULLERENE C60. ChemChemTech, 59(8), 12-20. https://doi.org/10.6060/tcct.20165908.27y
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)

Most read articles by the same author(s)