DISPERSED POLYOXADIAZOLE MODIFIER FOR ANTIFRICTION PHENOLFORMALDEHYDE TEXTOLITES

  • Mariya O. Panova A.N. Nesmeyanov Institute of Organoelement Compounds of the RAS
  • Dmitriy I. Buyaev A.N. Nesmeyanov Institute of Organoelement Compounds of the RAS
  • Vera V. Shaposhnikova A.N. Nesmeyanov Institute of Organoelement Compounds of the RAS
Keywords: phenol-formaldehyde resin, polyoxadiazole fiber, modifier, friction coefficient, wear, polymer composite materials, X-ray photoelectron spectroscopy, scanning electron microscopy

Abstract

Antifriction polymer composite materials based on phenol-formaldehyde resole binders, reinforced with textile-combined polyoxadiazole and cellulose fibers, have high tribological and physical-mechanical properties. This opens up prospects for solving a wide range of problems in the design of friction units of machines and mechanisms with an extended service life.  However, when processing these materials into finished products, technological difficulties arise that limit their use. The use of a dispersed modifier simplifies the technology for producing polymer composite materials. By grinding polyoxadiazole fibers in a ball vibration mill, a new type of anti-friction dispersed modifier of phenol-formaldehyde binders was obtained. In accordance with the data of diffractometric analysis, when grinding polyoxadiazole fiber, there is a slight decrease in its crystallinity, which has virtually no effect on the physical and mechanical properties of the material. The resulting dispersed modifier is a mixture of short fragments of deformed polyoxadiazole filaments and flaky polyoxadiazole particles of irregular shape, the size of which reaches 200-250 µm. X-ray photoelectron spectroscopy data indicate an increase in the nitrogen content in the resulting powdered product compared to the original polyoxadiazole fiber. The introduction of a powdered polyoxadiazole modifier into a phenol-formaldehyde binder for cotton textolites ensured the production of self-lubricating wear-resistant antifriction polymer composite materials with good tribological properties. A decrease in the coefficient of friction, wear and temperature in the friction contact zone is observed (under conditions of dry friction on a steel counterbody). The samples of the studied materials with a small content of polyoxadiazole modifier (5% wt.) in the phenol-formaldehyde binder have the best tribological characteristics. The properties of the resulting materials are due to polymer composite materials reinforced with a fabric combination of fibers, polyoxadiazole and cellulose.

For citation:

Panova M.O., Buyaev D.I., Shaposhnikova V.V. Dispersed polyoxadiazole modifier for antifriction phenolformaldehyde textolites. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 11. P. 79-85. DOI: 10.6060/ivkkt.20246711.7051.

References

Aliyeva A.P. Composite materials based on phenol formal-dehyde resins. Prom. Proizvod. Ispol’z. Elastomerov. 2021. N 1. P. 34-43 (in Russian). DOI: 10.24412/2071-8268-2021-1-34-43.

Arakelyan A.G. Preparation and use of textolite. Tendentsii Razvitiya Nauki Obrazovaniya. 2018. N 38-4. P. 32-33 (in Russian). DOI: 10.18411/lj-05-2018-84.

Matveeva I.G., Lebedev M.P. Study of the strength properties of textolite reinforced with fabrics with different types of weave. Tr. Kol'skogo Nauchnogo Tsentra RAN. 2017. V. 8. N 5-1. P. 94-97 (in Russian).

Sharifullin S.N., Denisov V.A., Zadorozhny R.N., Kudryashova, E.Yu., Reschikov E., Izikaeva A.I. Tribotechnical tests of layered polymers. Tribol. Ind. 2020. V. 42. N 1. P. 81. DOI: 10.24874/ti.2020.42.01.08.

Gusev E.V., Naboyshchikova N.A., Ageeva T.A. Technological background for obtaining a composite material based on hard synthetic resins and fiber filler. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 6. P. 58-63 (in Russian). DOI: 10.6060/ivkkt.20226506.6553.

Gusev E.V., Naboyshchikova N.A., Kolobov M.Y., Ageeva T.A. Development and production of phenoplastic composites for mechanical engineering purpose. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 9. P. 82-89 (in Russian). DOI: 10.6060/ivkkt.20246709.7021.

Yudin A.S., Buyaev D.I., Krasnov A.P., Sachek B.Ya., Afonicheva O.V., Bazhenova V.B. Dispersed fillers in tribological polymer fiberreinforced materials (exploratory study). Vopr. Materialoved. 2012. V. 72. N 4. P. 231-239 (in Russian).

Xantosa M. Functional fillers for plastics. S-Pb.: Nauchnyye osnovy i tekhnologii. 2010. 462 p. (in Russian).

Li D., Hu, X., Huang Z., Chen Y., Han H., Xiao Ch. Effect of several modifiers on the mechanical and tribological properties of phenol formaldehyde resin. High Perform. Polym. 2018. V. 30. N 5. P. 580-590. DOI: 10.1177/0954008317710317.

Kumar N., Bharti A., Goyal H.S., Patel K.K. The evolution of brake friction materials: a review. Mater. Phys.Mech. 2021. V. 47. N 5. P. 796-815. DOI: 10.18149/MPM.4752021_13.

Ünlü B.S., Atic E., Yilmaz S.S. Tribological behaviors of polymer based journal bearings manufactured from particle reinforced bakelite composites. Mater. Des. 2009. V. 30. P. 3896-3899. DOI: 10.1016/j.matdes.2009.03.024.

Perepelkin K.E. Chemical fibers: development of production, methods of production, properties, prospects. SPb: Iz-daniye SPGUTD. 2008. 354 p. (in Russian).

Zhelezina G.F. New generation of structural and functional organic plastics. Tr. VIAM. 2013. N 4. P. 6-8 (in Russian).

Lertwassana W. Parnklang T., Mora P., Jubsilp C., Rimdusit S. High performance aramid pulp/carbon fiber-reinforced polybenzoxazine composites as friction materials. Compos. Part B: Eng. 2019. V. 177. P. 107280. DOI: 10.1016/j.compositesb.2019.107280.

Davydova I.F., Kavun N.S. Heat-resistant antifriction textolites. Tr. VIAM. 2014. N 11. P. 4 (in Russian). DOI: 10.18577/2307-6046-2014-0-11-4-4.

Burmistr M.V., Boiko V.S., Lipko E.O., Gerasimenko K.O., Gomza Yu.P., Vesnin R.L., Chernyayev A.V., An-anchenko B.A., Kovalenko V.L. Antifriction and construction materials based on modified phenol-formaldehyde resins reinforced with mineral and synthetic fibrous fillers. Mech. Compos. Mater. 2014. V. 50. P. 213-222. DOI: 10.1007/s11029-014-9408-0.

Buyaev D.I., Krasnov A.P., Naumkin A.V., Yudin A.S., Afonicheva O.V., Golub A.S., Goroshkov M.V., Buzin M.I. Effect of chemical structure of aramide and polyoxadiazole fibers on friction of organoplastics. J. Frict. Wear. 2016. V. 37. N 4. P. 351-357. DOI: 10.3103/S106836661604005X.

Sazanov Yu.N., Dobrovol’skaya I.P., Lysenko V.A., Sal’nikova P.Yu., Kosyakov D.S., Pokryshkin S.A. Thermochemical structural transformations of polyoxadiazoles. Russ. J. Appl. Chem. 2015. V. 88. N 8. P. 1304–1310. DOI: 10.1134/S1070427215080121.

Yan X., Li Z., Zhou W., Jiang M., Liu P., Xu J. Study of the thermal decomposition and flame-retardant mechanism of sulfonated polyoxadiazole fibers. J. Therm. Anal. Calorim. 2016. V. 126. P. 1301–1311. DOI: 10.1007/s10973-016-5752-8.

Krasnov A.P., Timofeev V.A., Afonicheva O.V., Buyaev D.I., Chukalovsky P.A., Kuznetsov V.V. Influence of tri-bochemical active bindings in creation of new reinforced antifrictional material. Vopr. Materialoved. 2006. V. 46(2). P. 105-113 (in Russian).

Buyaev D. I., Naumkin, A.V., Yudin, A.S, Alekseev V.V., Maslakov K.I., Afonicheva O.V., Kiselev S.S., Osipchik V.S., Klabukova L.F., Krasnov A.P. Tribochemical processes in epoxyorganic textolite–steel friction pair. J. Frict. Wear. 2016. V. 37. P. 15-22. DOI: 10.3103/S1068366616010049.

Burya A.I., Tomina A.-M.V., Chernov V.A. Effect of fiber on oksalon tribological characteristics organic plastics based on phenylone С–1. Probl. Tribol. 2016. V. 82. N 4. P. 11-16 (in Russian).

Published
2024-11-06
How to Cite
Panova, M. O., Buyaev, D. I., & Shaposhnikova, V. V. (2024). DISPERSED POLYOXADIAZOLE MODIFIER FOR ANTIFRICTION PHENOLFORMALDEHYDE TEXTOLITES. ChemChemTech, 67(11), 79-85. https://doi.org/10.6060/ivkkt.20246711.7051
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)