МЕМБРАНЫ В БИОТЕХНОЛОГИИ: СОВРЕМЕННОЕ СОСТОЯНИЕ И ПЕРСПЕКТИВЫ

  • Artem D. Katalevskiy Владимирский государственный университет им. А.Г. и Н.Г. Столетовых
  • Kirill V. Smirnov Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии
  • Natalia N. Smirnova Владимирский государственный университет им. А.Г. и Н.Г. Столетовых
Ключевые слова: ультрафильтрация, микрофильтрация, мембранные биореакторы, мембранная хроматография

Аннотация

Мембранные процессы всегда являлись неотъемлемой частью биотехнологических процессов. Сегодня без них не обходится ни одно биотехнологическое производство: обратный осмос, ультрафильтрация, микрофильтрация, разделение газов, хроматография, первапорация и электродиализ – все эти процессы играют важную роль в тех или иных технологических решениях. Несмотря на то, что первые мембранные системы были заимствованы из технологий, которые разрабатывались для других промышленных применений, в течение последних 45 лет новые материалы и элементы создаются специально для нужд биотехнологической промышленности. Мембраны хорошо подходят для работы с биологическими молекулами: относительно низкие температуры и давления, отсутствие необходимости фазовых переходов и введения химических добавок минимизируют степень денатурации, дезактивации, и/или деградации биологических продуктов. В настоящее время мембранные технологии занимают лидирующие позиции в процессах стерилизующей фильтрации, осветления, культивирования клеточных культур, удаления вирусов, концентрирования и очистки белков. Все большее распространение получают процессы с применением мембранных биореакторов и мембранной хроматографии. В обзоре показаны возможности существующих разработок в мембранных технологиях, акцентируется внимание на используемых мембранных материалах и характеристиках мембранных систем, применяемых для коммерческого производства. Процессы мембранного разделения требуют более дорогостоящего оборудования по сравнению с традиционными процессами разделения, однако являются более энергоэффективными. По своей конструкции мембранные системы, как правило, компактны и имеют модульную архитектуру, благодаря которой появляется возможность использования одного и того же оборудования для решения различных задач. Имеются предпосылки того, что новые разработки в мембранных технологиях смогут удовлетворить растущие нужды биотехнологической отрасли в большей производительности и снижении стоимости производства.

Для цитирования:

Каталевский А.Д., Смирнов К.В., Смирнова Н.Н. Мембраны в биотехнологии: современное состояние и перспективы. Изв. вузов. Химия и хим. технология. 2025. Т. 68. Вып. 1. С. 6-22. DOI: 10.6060/ivkkt.20256801.7075.

Литература

Baker R.W. Membrane technology and applications. Fourth edition. Wiley. 2023. 546 p. DOI: 10.1002/9781119686026.

Show P.L., Ooi C.W., Ling T.C. Bioprocess Engineering: Downstream Processing. CRC Press. 2019. 232 p. DOI: 10.1201/9780429466731.

Ferry J.D. Ultrafilter membranes and ultrafiltration. Chem. Rev. 1936. V. 18. N 3. P. 373-448. DOI: 10.1021/cr60061a001.

Ladisch M.R., Kohlmann K.L. Recombinant human insulin. Biotechnol. Progr. 1992. V. 8. N 6. P. 469-478. DOI: 10.1021/ bp00018a001.

Blanch H.W., Clark D.S. Biochemical Engineering. CRC Press. 1997. 702 p.

Kosikowski F.V. Membrane separations in food processing. Membrane separations in biotechnology. Marcel Dekker. 1986. 201 p.

Zydney A.L. New developments in membranes for bioprocessing – A review. J. Membr. Sci. 2021. V. 620. N 118804. P. 7-9. DOI: 10.1016/j.memsci.2020.118804.

Quianzon C.C., Cheikh I. History of insulin. J. Community Hosp. Intern. Med. Perspect. 2012. V. 2. N 2. P. 18701. DOI: 10.3402/jchimp.v2i2.18701.

Hummel J., Pagkaliwangan M., Gjoka X., Davidovitz T., Stock R., Ransohoff T., Gantier R., Schofield M. Modeling the downstream processing of monoclonal antibodies reveals cost advantages for continuous methods for a broad range of manufacturing scales. J. Biotechnol. 2019. V. 14. N 2. P. 1700665. DOI: 10.1002/biot.201700665.

Gitlin I., Carbeck J.D., Whitesides G.M. Why are proteins charged? Networks of charge-charge interactions in proteins measured by charge ladders and capillary electrophoresis. Angew. Chem. Int. Ed. Engl. 2006. V. 45. N 19. P. 3022-3060. DOI: 10.1002/anie.200502530.

Zeman L.J., Zydney A.L. Microfiltration and Ultrafiltration: Principles and Applications. Marcel Dekker. 1996. 642 p.

Pujar N.S., Zydney A.L. Electrostatic effects on protein partitioning in size-exclusion chromatography and membrane ultrafiltration. J. Chromatogr. A. 1998. V. 796. N 2. P. 229-238. DOI: 10.1016/s0021-9673(97)01003-0.

Shakweer W.M.E., Krivoruchko A.Y., Dessouki S.A., Khattab A.A. A review of transgenic animal techniques and their applications. J. Genet. Eng. Biotechnol. 2023. V. 21. N 55. DOI: 10.1186/s43141-023-00502-z.

Sheshukova E.V., Komarova T.V. Dorokhov Y.L. Plant factories for the production of monoclonal antibodies. Biochemistry. 2016. V. 81. P. 1118–1135. DOI: 10.1134/S0006297916100102.

Dondapati S.K., Stech M., Zemella A., Kubick S. Cell-Free Protein Synthesis: A Promising Option for Future Drug Development. BioDrugs. 2020. V. 34. P. 327–348. DOI: 10.1007/s40259-020-00417-y.

Global Analysis: DNA Tech Sector Landscape 2023 [Electronic resource]: Recombinant DNA Technology Global Market Report 2023. URL: https://www.reportlinker.com/p06451225/Recom-binant-DNA-Technology-Global-Market-Report.html?utm_source=GNW (дата обращения: 07.02.2024).

Van der Laan J.W., DeGeorge J.J. Global Approach in Safety Testing. AAPS Advances in the Pharmaceutical Sci-ences Series. V. 5. Springer. 2013. 315 p. DOI: 10.1007/978-1-4614-5950-7_10.

Breydo L., Redington J.M., Uversky V.N. Chap. 4. Effects of Intrinsic and Extrinsic Factors on Aggregation of Physiologically Important Intrinsically Disordered Proteins. Int. Rev. Cell Mol. Biol. 2017. V. 329. P. 145-185. DOI: 10.1016/bs.ircmb.2016.08.011.

The WHO. Guidelines on the quality, safety and efficacy of biotherapeutic protein products prepared by recombinant DNA technology [Online resource] Annex 4, TRS No 987. URL: https://www.who.int/publications/m/item/recombinant-dna-annex-4-trs-no-987 (accessed: 07.02.2024) (in Russian).

Lebedeva O.A., Sedelkin V.M., Potekhina L.N. Technology of production and characteristics of chitosan nanofiltration membranes. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 1. P. 58-65 (in Russian). DOI: 10.6060/ivkkt.20226501.6340.

Kharina A.Yu., Cha-rushina O.E., Eliseeva T.V. Specific features of components mass transfer in electrodialysis of a solution aromatic amino acid-mineral saltsucrose. Membrany Membrannye Tekhnol. 2022. V. 12. N 2. P. 145-150 (in Russian).

Singh R., Satyannarayana K.V.V., Kumar V.R., Moorthy G.I. Membrane Technology in Bioprocess Engineering: Bioprocess Engineering for Bioremediation. The Handbook of Environmental Chemistry. V. 104. Springer. 2020. P. 1-26. DOI: 10.1007/698_2020_505.

Drioli E., Giorno L. Biocatalytic Membrane Reactors: Applications in Biotechnology and the Pharmaceutical Industry. CRC press. 2020. 211 p. DOI: 10.1201/9781003062721.

Agrawal P., Wilkstein K., Guinn E., McKensie Mason M.K., Martinez C.S., Saylae J. A Review of Tangential Flow Filtration: Process Development and Applications in the Pharmaceutical Industry. Org. Process Res. Dev. 2023. V. 27. N 4. P. 571-591 DOI: 10.1021/acs.oprd.2c00291.

Svitsov A.A. Introduction to Membrane Technology. M.: DeLi print. 2007. 208 p. (in Russian).

Liang Y., Ma H., Taha A.A., Hsiao B.S. Highflux antifouling nanofibrous composite ultrafiltration membranes containing negatively charged water channels. J. Membr. Sci. 2020. V. 612. P. 118382. DOI: 10.1016/j.memsci.2020.118382.

Bernstein R., Singer C.E., Singh S.P., Mao C., Arnusch C.J. UV initiated surface grafting on polyethersulfone ul-trafiltration membranes via inkjet printing-assisted modification. J. Membr. Sci. 2018. V. 548. P. 73-80. DOI: 10.1016/j.memsci.2017.10.069.

Liu T., Zhou H., Graham N., Lian Y., Yu W., Sun K. The antifouling performance of an ultrafiltration mem-brane with predeposited carbon nanofiber layers for water treatment. J. Membr. Sci. 2018. V. 557. P. 87-95. DOI: 10.1016/j.memsci.2018.04.018.

Kolomkina A.D., Shitova V.O., Farnosova E.N., Kagramanov G.G. Membrane separation methods culture fluid. Usp. Khim. Khim. Tekhnol. 2015. V. 29. N 2(161). P. 113-115 (in Russian).

Charcosset C. Membrane processes in biotechnology: An overview. Biotech. Adv. 2006. V. 24. N 5. P. 482–492. DOI: 10.1016/j.biotechadv.2006.03.002.

Jornitz M.W. Sterile Filtration: A Practical Approach. CRC Press. 2020. 640 p. DOI: 10.1201/9780429116971.

Van Reis R., Zydney A.L. Bioprocess membrane technology. J. Membr. Sci. 2007. V. 297. N 1-2. P. 16-50. DOI: 10.1016/j.memsci.2007.02.045.

Hermia J. Constant Pressure Blocking Filtration Laws - Application To Power-law Non-newtonian Fluids. Chem. Eng. Trans. 1982. V. 60. N 3. P. 183-187.

Helling A., Grote C., Büning D., Ulbricht M., Wessling M., Polakovič M., Volkmar T. Influence of flow altera-tions on bacteria retention during microfiltration. J. Membr. Sci. 2019. V. 575. P. 147–159. DOI: 10.1016/j.memsci.2019.01.021.

Fernández G.L., Álvarez B.S., Riera R.F. Microfiltration applied to dairy streams: removal of bacteria. J. Sci. Food Agric. 2013. V. 93. N 2. P. 187-196. DOI: 10.1002/jsfa.5935.

Vanysacker L., Declerck P., Bilad M.R., Vankelecom I.F.J. Biofouling on microfiltration membranes in MBRs: Role of membrane type and microbial community. J. Membr. Sci. 2014. V. 453. P. 394-401. DOI: 10.1016/j.memsci.2013.11.024.

Jiang B.B., Sun X.F., Wang L., Wang S.Y., Liu R.D., Wang S.G. Polyethersulfone membranes modified with D-tyrosine for biofouling mitigation: Synergistic effect of surface hydrophility and antimicrobial properties. Chem. Eng. J. 2017. V. 311. P. 135–142. DOI: 10.1016/j.cej.2016.11.088.

Song W., Li Z., Li Y., You H., Qi P., Liu F., Loy D.A. Facile solgel coating process for antibiofouling modifica-tion of poly (vinylidene fluoride) microfiltration membrane based on novel zwitterionic organosilica. J. Membr. Sci. 2018. V. 550. P. 266-277. DOI: 10.1016/j.memsci.2017.12.076.

Zhang X., Wang Z., Tang C.Y., Ma J., Liu M., Ping M., Chen M., Wu Z. Modification of microfiltration mem-branes by alkoxysilane polycondensation induced quaternary ammonium compounds grafting for biofouling mitigation. J. Membr. Sci. 2018. V. 549. P. 165-172. DOI: 10.1016/j.memsci.2017.12.004.

Hsu C.H., Venault A., Chang Y. Facile zwitterionization of polyvinylidene fluoride microfiltration membranes for biofouling mitigation. J. Membr. Sci. 2022. V. 648. P. 120348. DOI: 10.1016/j.memsci.2022.120348.

Tang L., Gu W., Yi P., Bitter J.L., Hong J.Y., Fairbrother D.H., Chen K.L. Bacterial antiadhesive proper-ties of polysulfone membranes modified with polyelectrolyte multilayers. J. Membr. Sci. 2013. V. 446. P. 201-211. DOI: 10.1016/j.memsci.2013.06.031.

Sinclair T.R., Patil A., Raza B.G., Reurink D., Hengel S.K., Rutjes S.A., Husman A.M. de R., H.D.W. Roesink, Vos W.M. Cationically modified membranes using covalent layerby-layer assembly for antiviral applications in drinking water. J. Membr. Sci. 2019. V. 570-571. P. 494-503. DOI: 10.1016/j.memsci.2018.10.081.

Kochkodan V., Johnson D.J., Hilal N. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling. Adv. Colloid Interface Sci. 2014. V. 206. P. 116-140. DOI: 10.1016/j.cis.2013.05.005.

Tang Y., Lin Y., Ma W., Wang X. A review on microporous polyvinylidene fluoride membranes fabricated via thermally induced phase separation for MF/UF application. J. Membr. Sci. 2021. V. 639. P. 119759. DOI: 10.1016/j.memsci.2021.119759.

Moslehi M., Mahdavi H. Controlled pore size nanofibrous microfiltration membrane via multistep interfacial polymerization: Preparation and characterization. Sep. Purif. Technol. 2019. V. 223. P. 96-106. DOI: 10.1016/j.seppur.2019.04.041.

Weinberger M.E., Kulozik U. Pulsatile crossflow improves microfiltration fractionation of cells and proteins. J. Membr. Sci. 2021. V. 629. P. 119295. DOI: 10.1016/j.memsci.2021.119295.

Serabian M.A., Pilaro A.M. Safety assessment of bio-technology-derived pharmaceuticals: ICH and beyond. Toxicol. Pathol. 1999. V. 27. N 1. P. 27-31. DOI: 10.1177/019262339902700106.

Shoaebargh S., Gough I., Medina M.F., Smith A., Heijden J., Lichty B.D., Bell J.C., Latulippe D.R. Sterile filtration of oncolytic viruses: An analysis of effects of membrane morphology on fouling and product recovery. J. Membr. Sci. 2017. V. 548. P. 239-246. DOI: 10.1016/j.memsci.2017.11.022.

Shoaebargh S., Wright E., Csordas M., Medina M.F.C., Lichty B., Latulippe D.R. Probing effects of additives on the filterability of oncolytic viruses via a microfiltration process. J. Membr. Sci. 2021. V. 620. P. 118783. DOI: 10.1016/j.memsci.2020.118783.

Bolton G.R. Basha J., Lacasse D.P. Achieving high mass-throughput of therapeutic proteins through parvovirus retentive filters. Biotechnol. Prog. 2010. V. 26. N 6. P. 1671-1677. DOI: 10.1002/btpr.494.

Wickramasinghe S.R., Stump E.D., Grzenia D.L., Husson S.M., Pellegrino J. Understanding virus filtration membrane performance. J. Membr. Sci. 2010. V. 365. N 1-2. P. 160–169. DOI: 10.1016/j.memsci.2010.09.002.

Kyzin A.A., Zagidullin N.V., Gelich L.V., Timerbaeva R.H., Israfilov A.G. Purification and concentration of influenza virus by micro- and ultrafiltration. Vestn. Bashkir. Un-ta. 2014. V. 19. N 4. P. 1223-1226 (in Russian).

Johnson S.A., Chen S., Bolton G., Chen Q., Lute S., Fisher J., Brorson K. Virus filtration: A review of current and future practices in bioprocessing. Biotechnol. Bioeng. 2022. V. 119. N 3. P. 743-761. DOI: 10.1002/bit.28017.

Al-Attabi R., Rodriguez-Andres J., Schütz J.A., Bechelany M., Ligneris E., Chen X., Kong L., Morsi Y.S., Dumée L.F. Catalytic electrospun nano-composite membranes for virus capture and remediation. Sep. Purif. Technol. 2019. V. 229. P. 115806. DOI: 10.1016/j.seppur.2019.115806.

Fallahianbijan F., Giglia S., Carbrello C., Zydney A.L. Quantitative analysis of internal flow distribution and pore interconnectivity within asymmetric virus filtration membranes. J. Membr. Sci. 2020. V. 595. P. 117578. DOI: 10.1016/j.memsci.2019.117578.

Milliporesigma (Merck Group): [сайт]. URL: https:// www.merckmillipore.com (дата обращения: 07.02.2024).

Pall Corporation: [сайт]. URL: https://www.pall.com (дата обращения: 07.02.2024).

Sinclair T.R., Patil A., Raza B.G., Reurink D., Van den Hengel S.K., Rutjes S.A., De Roda Husman A.M., Roesink H.D.W., De Vos W.M. Cationically modified membranes using covalent layerby-layer assembly for antiviral applications in drinking water. J. Membr. Sci. 2019. V. 570-571. P. 494-503. DOI: 10.1016/j.memsci.2018.10.081.

Pall Corporation. Данные об оборудовании для получения ультрачистой воды: [сайт]. URL: https://shop.pall.com/us/en/ microelectronics/semiconductor/ultrapure-water-1/zidgri78l6l (дата об-ращения 07.02.2024).

Asahi Kasei Bioprocess. Презентация продукции серии Planova: [сайт]. URL: https://planova.ak-bio.com/products_ services/planova-n/ (дата обращения 07.02.2024).

Nazem-Bokaee N., Chen D., O'Donnell S.M., Zydney A.L. Visualizing effects of protein fouling on capture pro-files in the Planova BioEX and 20N virus filters. J. Membr. Sci. 2020. V. 610. P. 118271. DOI: 10.1016/j.memsci.2020.118271.

Ogikubo Y., Norimatsu M., Noda K., Takahashi J., Inotsume M., Tsuchiya M., Tamura Y. Evaluation of the bacterial endotoxin test for quantification of endotoxin contamination of porcine vaccines. Biologicals. 2004. V. 32. N 2. P. 88-93. DOI: 10.1016/j.biologicals.2004.05.001.

Fiske M.J., Fredenburg R.A., Meid K.R, McMichael J.C., Arumugham R. Method for reducing endotoxin in Moraxella catarrhalis UspA2 protein preparations. J. Chromatogr. B. Biomed. Sci. Appl. 2001. V. 753. N 2. P. 269-278. DOI: 10.1016/s0378-4347(00)00561-2.

Zhuravko A.S., Shvets V.I. Bacterial endotoxins properties and methods of removing them from bio-pharmaceutical drugs. Vestn. MITKhT. 2014. V. 9. N 4. P. 27-33 (in Russian).

Gusarov D.A. Downstream process of biopharmaceuticals. Razrab. Registr. Lekarstv. Sr-v. 2016. V. 3. N 16. P. 88-99 (in Russian).

Nestola P., Peixoto C., Silva R.R., Alves P.M., Mota J.P., Carrondo M.J. Improved virus purification processes for vaccines and gene therapy. Biotechnol. Bioeng. 2015. V. 112. N 5. P. 843-857. DOI: 10.1002/bit.25545.

Mukhacheva A.V., Movsesyants A.A., Alsynbaev M.M. Choice of the optimum methods of purification of the proteins which are a part of AntiRabies Vaccine cultural concentrated cleared inactivated (KoKAV). Epidemiolog. Vaktsinoprofilaktika. 2014. V. 3. N 76. P. 84-88 (in Russian).

Ramirez J. Ultrafiltration: Methods, applications and insights. Nova Science Publ. 2017. 172 p.

Smirnova N.N., Katalevskii A.D., Smirnov K.V. Concentration of ionic groups as a factor to control adsorption and mass transfer properties of aromatic poly- and copolyamide based ultrafiltration membranes. Russ. J. Appl. Chem. 2022. V. 95. N 10. P. 1584-1593. DOI: 10.1134/S1070427222100093.

Ariono D., Aryanti P.T.P., Wardani A.K., Wenten I.G. Analysis of Protein Separation Mechanism in Charged Ul-trafiltration Membrane. J. Eng. Technol. Sci. 2018. V. 50. N 2. P. 202-223. DOI: 10.5614/j.eng.technol.sci.2018.50.2.4.

Arunkumar A., Etzel M.R. Fractionation of α-lactalbumin and β-lactoglobulin from bovine milk serum using staged, positively charged, tangential flow ultrafiltration membranes. J. Membr. Sci. 2014. V. 454. P. 488-495. DOI: 10.1016/j.memsci.2013.12.040.

Lin Zh., Hu Ch.,Wu X., Zhong W., Chen M., Zhang Q., Zhu A., Liu Q. Towards improved antifouling ability and separation performance of polyethersulfone ultrafiltration membranes through poly(ethylenimine) grafting. J. Membr. Sci. 2018. V. 554. P. 125-133. DOI: 10.1016/j.memsci.2018.02.065.

Mehrparvar A., Rahimpour A. Surface modification of novel polyether sulfone amide (PESA) ultrafiltration membranes by grafting hydrophilic monomers. J. Ind. Eng. Chem. 2015. V. 28. P. 359-368. DOI: 10.1016/j.jiec.2015.03.016.

Meng X., Huo S., Wang L., Wang X., Lv Y., Tang W., Miao R., Huang D. Effect of electrokinetic property of charged polyether sulfone membrane on bovine serum albumin fouling behavior. Front. Environ. Sci. Eng. 2017. V. 11. N 2. P. 2. DOI: 10.1007/s11783-017-0907-9.

Emin C., Kurnia E., Katalia I., Ulbricht M. Polyaryl-sulfone-based blend ultrafiltration membranes with com-bined size and charge selectivity for protein separation. Sep. Purif. Technol. 2018. V. 193. P. 127-138. DOI: 10.1016/j.seppur.2017.11.008.

Kumar S.A., Srinivasan G., Govindaradjane S., Kirubasankar B., Jayaraman S. Modified polyethersul-fone thin-film composite membrane via interfacial polymerization for an effective dye separation. Env. Sust. 2022. V. 5. P. 345–354. DOI: 10.1007/s42398-022-00239-4.

Smirnova N.N., Pokryshkina A.S., Smirnov K.V. Immobilization of reactive dyes on the surface of ultrafiltration membranes based on poly-m-phenylenisophthalamide. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 1. P. 30-37. DOI: 10.6060/ivkkt.20226501.6378.

Valiño V., San Román M.F., Ibañez R., Ortiz I. Im-proved separation of bovine serum albumin and lactoferrin mixtures using charged ultrafiltration membranes. Sep. Purif. Technol. 2014. V. 125. P. 163-169. DOI: 10.1016/j.seppur.2014.01.023.

Arunkumar A., Etzel M.R. Negatively charged tangential flow ultrafiltration membranes for whey protein concentration. J. Membr. Sci. 2015. V. 475. P. 340-348. DOI: 10.1016/j.memsci.2014.10.049.

Nieminen J., Anugwom I., Pihlajamäki A., Mänttäri M. TEMPO-mediated oxidation as surface modification for cellulosic ultrafiltration membranes: Enhancement of ion rejection and permeability. J. Membr. Sci. 2022. V. 659. P. 120786. DOI: 10.1016/j.memsci.2022.120786.

Tran D.H., Ulbricht M. Cellulose-cellulose composite membranes for ultrafiltration. J. Membr. Sci. 2023. V. 672. P. 121426. DOI: 10.1016/j.memsci.2023.121426.

Komissarov A.V., Aleshina Y.A., Gromova O.V., Nikiforov A.K., Eremin S.A., Volokh O.A., Lobovikova O.A., Perepelitsa A.I. Deployment of Ultrafiltration for Concentrating and Purification of Antigens. Problemy Osobo Opasnykh Infektsiy. 2015. V. 1.

P. 79-84 (in Russian). DOI: 10.21055/0370-1069-2015-1-79-84.

Asif M.B., Hai F.I., Jegatheesan V., Price W.E., Nghiem L.D., Yamamoto K. Current Trends and Future Develop-ments on (Bio-) Membranes. Chap. 8. Applications of Membrane Bioreactors in Biotechnology Processes. Am-sterdam: Elsevier. 2019. 349 p. DOI: 10.1016/B978-0-12-813606-5.00008-7.

Zhan G., Yu Z., Zhang X, Fan S., Gao H., Liu C., Zhou Q., Shao H., Wang L., Guo X. Exploration on Optimized Control Way of D-Amino Acid for Efficiently Mitigating Membrane Biofouling of Membrane Bioreactor. Mem-branes. 2021. V. 11. N 8. P. 612. DOI: 10.3390/membranes11080612.

Raghavan D.S.S., Qiu G., Ting Y.P. Fate and removal of selected antibiotics in an osmotic membrane bioreactor. Chem. Eng. J. 2018. V. 334. P. 198-205. DOI: 10.1016/j.cej.2017.10.026.

Arathoon W.R., Birch J.R. Large-scale cell culture in biotechnology. Science. 1986. V. 232. 4756. P. 1390-1395. DOI: 10.1126/science.2424083.

Gomez N., Lull J., Yang X., Wang Y., Zhang X., Wieczorek A., Harrahy J., Pritchard M., Cano D.M., Shearer M., Goudar C. Improving product quality and productivity of bispecific molecules through the application of continuous perfusion principles. Biotechnol. Prog. 2020. V. 36. N 4. P. e2973. DOI: 10.1002/btpr.2973.

Ozturk S.S., Zhou W., Kantardjieff A. Equipment for Large-Scale Mammalian Cell Culture. In: Mammalian Cell Cultures for Biologics Manufacturing. Advances in Biochemical Engineering/Biotechnology. Springer. 2013. V. 139. 259 p. DOI: 10.1007/10_2013_259.

EMD Millipore, Inc. Перфузионный фильтр и контроллер для применения с семенной линией N-1: [сайт]. URL: https://www.emdmillipore.com/US/en/product/Cellicon-Perfusion-Solution,MM_NF-C223762 (дата обращения 07.02.2024).

Kelly W., Scully J., Zhang D., Feng G., Lavengood M., Condon J., Knighton J., Bhatia R. Understanding and modeling alternating tangential flow filtration for perfusion cell culture. Biotechnol. Prog. 2014. V. 30. N 6. P. 1291-1300. DOI: 10.1002/btpr.1953.

Karst D.J., Serra E., Villiger T.K., Soos M., Morbidelli M. Characterization and comparison of ATF and TFF in stirred bioreactors for continuous mammalian cell culture processes. Biochem. Eng. J. 2016. V. 110. P. 17-26. DOI: 10.1016/j.bej.2016.02.003.

Walther J., McLarty J., Johnson T. The effects of alternating tangential flow (ATF) residence time, hydrodynam-ic stress, and filtration flux on high-density perfusion cell culture. Biotechnol. Bioeng. 2019. V. 116. N 2. P. 320-332. DOI: 10.1002/bit.26811.

Krzeminski P., Leverette L., Malamis S., Katsou E. Membrane bioreactors – A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. J. Membr. Sci. 2017. V. 527. P. 207-227. DOI: 10.1016/j.memsci.2016.12.010.

Zhiwei Wang Z., Jinxing Ma J., Tang C.Y., Kimura K., Wang Q., Han X. Membrane cleaning in membrane bio-reactors: A review. J. Membr. Sci. 2014. V. 468. P. 276-307. DOI: 10.1016/j.memsci.2014.05.060.

Meghdad Pirsaheb M., Farahani M.H.D.A., Zinadini S., Zinatizadeh A.A., Rahimi M., Vatanpour V. Fabrication of high-performance antibiofouling ultrafiltration mem-branes with potential application in membrane bioreactors (MBRs) comprising polyethersulfone (PES) and polycitrate-Alumoxane (PC-A). Sep. Purif. Technol. 2019. V. 211. P. 618-627. DOI: 10.1016/j.seppur.2018.10.041.

Lotfikatouli S., Hadi P., Yang M., Walker H.W., Hsiao B.S., Gobler C., Reichel M., Mao X. Enhanced anti-fouling performance in Membrane Bioreactors using a novel cellulose nanofiber-coated membrane. Sep. Purif. Technol. 2021. V. 275. P. 119145. DOI: 10.1016/j.seppur.2021.119145.

Hage D.S., Anguizola J.A., Bi C., Li R., Matsuda R., Papastavros E., Pfaunmiller E., Vargas J., Zheng X. Pharmaceutical and biomedical applications of affinity chromatography: recent trends and developments. J. Pharm. Biomed. Anal. 2012. V. 69. P. 93-105. DOI: 10.1016/j.jpba.2012.01.004.

Hage D.S., Anguizola J.A., Li R., Matsuda R., Papastavros E., Pfaunmiller E.L., Matthew R. Sobansky M.R., Zheng X. Affinity chromatography. Chap. 12. Liquid Chromatography (Second Edition). Fundamentals and In-strumentation. Elsevier. 2017. P. 319-341. DOI: 10.1016/B978-0-12-805393-5.00012-9.

Danielsson Å. Affinity Chromatography. Chap. 17. Biopharmaceutical Processing. Development, Design, and Implementation of Manufacturing Processes. Elsevier. 2018. P. 367-378. DOI: 10.1016/B978-0-08-100623-8.00017-7.

Khoury G.E., Khogeer B., Chen C., Ng K.T., Jacob S.I., Lowe C.R. Bespoke affinity ligands for the purification of therapeutic proteins. Pharm. Bioproc. 2015. V. 3. N 2. P. 139-152. DOI: 10.4155/pbp.14.60.

Chen G., Umatheva U., Alforque L., Shirataki H., Ogawa S., Kato C., Ghosh R. An annular-flow, hollow-fiber membrane chromatography device for fast, high-resolution protein separation at low pressure. J. Membr. Sci. 2019. V. 590. P. 117305. DOI: 10.1016/j.memsci.2019.117305.

Madadkar P., Mahansaria R., Mukherjee J., Ghosh R. Enhancing the efficiency of disc membrane chromatography modules by using a flow directing layer. J. Membr. Sci. 2019. V. 580. P. 154-160. DOI: 10.1016/j.memsci.2019.03.026.

Ghosh R., Madadkar P., Wu Q. On the workings of laterally-fed membrane chromatography. J. Membr. Sci. 2016. V. 516. P. 26-32. DOI: 10.1016/j.memsci.2016.05.064.

Zhu J., Sun G. Facile fabrication of hydrophilic nano-fibrous membranes with an immobilized metal-chelate affinity complex for selective protein separation. ACS Appl. Mater. Interfaces. 2014. V. 6. N 2. P. 925-932. DOI: 10.1021/am4042965.

Kawka K., Madadkar P., Umatheva U., Shoaebargh S., Medina M.C., Lichty B.D., Ghosh R., Latulippe D.R. Purification of therapeutic adenoviruses using laterally-fed membrane chromatography. J. Membr. Sci. 2019. V. 579. P. 351-358. DOI: 10.1016/j.memsci.2019.02.056.

Brand J., Dachmann E., Pichler M., Lotz S., Kulozik U. A novel approach for lysozyme and ovotransferrin fractionation from egg white by radial flow membrane adsorption chromatography: Impact of product and process variables. Sep. Purif. Technol. 2016. V. 161. P. 44-52. DOI: 10.1016/j.seppur.2016.01.032.

Teepakorn C., Fiaty K., Charcosset C. Optimization of lactoferrin and bovine serum albumin separation using ion-exchange membrane chromatography. Sep. Purif. Technol. 2015. V. 151. P. 292-302. DOI: 10.1016/j.seppur.2015.07.046.

Madadkar P., Ghosh R. High-resolution protein separation using a laterally-fed membrane chromatography device. J. Membr. Sci. 2016. V. 499. P. 126-133. DOI: 10.1016/j.memsci.2015.10.041.

Chen G., Pagano J., Yu D., Ghose S., Li Z., Ghosh R. Fast and high-resolution purification of a PEGylated pro-tein using a z2 laterally-fed membrane chromatography device. J. Chromatogr. A. 2021. V. 1652. P. 462375. DOI: 10.1016/j.chroma.2021.462375.

Fan J., Luo J., Wan Y. Membrane chromatography for fast enzyme purification, immobilization and catalysis: A renewable biocatalytic membrane. J. Membr. Sci. 2017. V. 538. P. 68-76. DOI: 10.1016/j.memsci.2017.05.053.

Kosior A., Antošová M., Faber R., Villain L., Polakovič M. Single-component adsorption of proteins on a cellulose membrane with the phenyl ligand for hydrophobic interaction chromatography. J. Membr. Sci. 2013. V. 442. P. 216-224. DOI: 10.1016/j.memsci.2013.04.013.

Chen J., Peng R., Chen X. Hydrophobic interaction membrane chromatography for bioseparation and responsive polymer ligands involved. Front. Mater. Sci. 2017. V. 11. P. 197–214. DOI: 10.1007/s11706-017-0390-z.

Опубликован
2024-11-28
Как цитировать
Katalevskiy, A. D., Smirnov, K. V., & Smirnova, N. N. (2024). МЕМБРАНЫ В БИОТЕХНОЛОГИИ: СОВРЕМЕННОЕ СОСТОЯНИЕ И ПЕРСПЕКТИВЫ. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ», 68(1), 6-22. https://doi.org/10.6060/ivkkt.20256801.7075
Раздел
Обзорные статьи