PLASMA PARAMETERS AND REACTIVE-ION ETCHING KINETICS OF ZnO IN HYDROGEN BROMIDE: THE INFLUENCE OF INERT CARRIER GAS
Abstract
This work discusses the influence of inert carrier gases, Ar and He, on both gas-phase plasma characteristics and ZnO etching rate under typical reactive-ion etching conditions in the hydrogen bromide environment. Plasma diagnostics by Langmuir probes and 0-dimensional plasma modeling allowed one to compare how the content of given carrier gas does influence electrons-and ions-related plasma parameters, kinetics and densities of plasma active species. It was found that the transition toward Ar- or He-rich plasmas a) causes the growth of electron temperature (due to lower electron energy losses in collisions with atomic species); b) reduces plasma electronegativity; and c) results in opposite changes in both ion density and ion flux. The last phenomenon is due to opposite changes in total ionization rates determined by sufficient difference in ionization rate coefficients for Ar and He atoms. Important features of HBr + Ar plasma at 0–80% Ar are also the slower-than-linear fall of Br atom density (due to the intensification of electron impact dissociation for both HBr and Br2 molecules) as well as an increase in H atom density (due to decreasing their loss rate in gas-phase reactions). Etching experiments indicated that the ZnO etching rate is mostly contributed by the ion-assisted chemical reaction while the reaction rate decreases faster compare with the Br atom flux. The corresponding decrease in the effective reaction probability may be related to changes in both ion bombardment intensity and hydrogen passivation effect.
For citation:
Efremov A.M., Smirnov S.A., Betelin V.B., Kwon K.-H. Plasma parameters and reactive-ion etching kinetics of ZnO in hydrogen bromide: the influence of inert carrier gas. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 12. P. 86-95. DOI: 10.6060/ivkkt.20246712.7081.
References
Sugawara M. Plasma etching. Fundamentals and applications. New York: Oxford University Press. 1998. 362 p.
Advanced plasma processing technology. New York: John Wiley & Sons Inc. 2008. 479 p.
Wolf S., Tauber R.N. Silicon Processing for the VLSI Era. V. 1. Process Technology. New York: Lattice Press. 2000. 416 p.
Nojiri K. Dry etching technology for semiconductors. Tokyo: Springer Internat. Publ. 2015. 116 p.
Donnelly V.M., Kornblit A. Plasma etching: Yesterday, today, and tomorrow. J. Vac. Sci. Technol. 2013. V. 31. P. 050825-48. DOI: 10.1116/1.4819316.
Lieberman M.A., Lichtenberg A.J. Principles of plasma discharges and materials processing. New York: John Wiley & Sons Inc. 2005. 757 p.
Pearton S.J., Ren F., Fullowan T.R., Katz A., Hobson W.S., Chakrabarti U.K., Abernathy C.R. Plasma etching of III–V semiconductor thin films. Mater. Chem. Phys. 1992. V. 32(3). P. 215-234. DOI: 10.1016/0254-0584(92)90203-k.
Pearton S.J., Chakrabarti U.K., Lane E., Perley A.P., Abernathy C.R., Hobson W.S., Jones K.S. Characteristics of III‐V Dry Etching In HBr ‐ Based Discharges. J. Electrochem. Soc. 1992. V. 139. P. 856-865. DOI: 10.1149/1.2069316.
Bestwick T.D., Oehrlane G.S. Reactive ion etching of silicon using bromine containing plasmas. J. Vac. Sci. Technol. A. 1990. V. 8. P. 1696-1701. DOI: 10.1116/1.576832.
Jin W., Vitale S.A., Sawin H.H. Plasma-surface kinetics and simulation of feature profile evolution in Cl2+HBr etching of polysilicon. J. Vac. Sci. Technol. 2002. V. 20. P. 2106-2114. DOI: 10.1116/1.1517993.
Pargon E., Menguelti K., Martin M., Bazin A., Chaix-Pluchery O., Sourd C., Derrough S, Lill T., Joubert O. Mechanisms involved in HBr and Ar cure plasma treatments applied to 193 nm photoresists. J. Appl. Phys. 2009. V. 105. P. 094902. DOI: 10.1063/1.3116504.
Kim D. K., Kim Y. K., Lee H. A study of the role of HBr and oxygen on the etch selectivity and the post-etch profile in a polysilicon/oxide etch using HBr/O2 based high density plasma for advanced DRAMs. Mater. Sci. Semi-cond. Proc. 2007. V. 10(1). P. 41-48. DOI: 10.1016/j.mssp.2006.08.027.
Cunge G., Kogelschatz M., Joubert O., Sadeghi N. Plasma-wall interactions during silicon etching processes in high-density HBr/Cl2/O2 plasmas. Plasma Sources Sci. Technol. 2005. V. 14(2). P. S42-S52. DOI: 10.1088/0963-0252/14/2/S06.
Efremov A., Kim Y., Lee H. W., Kwon K.-H. A Comparative Study of HBr-Ar and HBr-Cl2 Plasma Chemistries for Dry Etch Applications. Plasma Chem. Plasma Proc. 2011. V. 31(2). P. 259-271. DOI: 10.1007/s11090-010-9279-7.
Efremov A., Lee J., Kwon K.-H. A comparative study of CF4, Cl2 and HBr+Ar inductively coupled plasmas for dry etching applications. Thin Solid Films. 2017. V. 629. P. 39-48. DOI: 10.1016/j.tsf.2017.03.035.
Efremov A.M., Betelin V.B., Kwon K.-H. On the comparison of reactiveion etching mechanisms for SiO2 and Si3N4 in HBr + Ar plasma. ChemChemTech. [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 6. P. 37-45 DOI: 10.6060/ivkkt.20236606.6786.
Efremov A.M., Smirnov S.A., Betelin V.B., Kwon K.-H. Mechanisms of Plasma Etching of Titanium, Indium, Tin and Zinc Oxides in a Mixture of HBr + Ar. Russ. Microelectronics. 2021. V. 50. N 6. P. 379-386. DOI: 10.1134/ S1063739721060068.
CRC Handbook of Chemistry and Physics. New York: CRC Press. 2010. 2760 p.
Gul B., Rehman A.-ur. A comparative study of capacitively coupled HBr/He, HBr/Ar plasmas for etching appli-cations: Numerical investigation by fluid model. Physics of Plasmas. 2015. V. 22. P. 103520(1-9). DOI: 10.1063/1.4934922.
Vyas S. A Short review on properties and applications of ZnO based thin film and devices. Johnson Matthey Technol. Rev. 2020. V. 64(2). P. 202-218. DOI: 10.1595/ 205651320X15694993568524.
Gartner M., Stroescu H., Mitrea D., Nicolescu M. Various Applications of ZnO Thin Films Obtained by Chemi-cal Routes in the Last Decade. Molecules. 2023. V. 28. P. 4674(1-27). DOI: 10.3390/molecules28124674.
Shun’ko E.V. Langmuir probe in theory and practice. Bo-ca Raton: Universal Publ. 2008. 245 p.
Cunge G., Ramos R., Vempaire D., Touzeau M., Neijbauer M., Sadeghi N. Gas temperature measurement in CF4, SF6, O2, Cl2, and HBr inductively coupled plasmas. J. Vac. Sci. Technol. A. 2009. V. 27(3). P. 471-478. DOI: 10.1116/1.3106626.
Celik Y., Aramaki M., Luggenholscher D., Czarnetzk U. Determination of electron densities by diode-laser absorption spectroscopy in a pulsed ICP. Plasma Sources Sci. Technol. 2011. V. 20. P. 015022(1-12). DOI: 10.1088/ 0963-0252/20/1/015022.
Efremov A.M., Kim G.H., Kim J.G., Bogomolov A.V., Kim C.I. On the applicability of self-consistent global model for the characterization of Cl2/Ar inductively coupled plasma. Microelectron. Eng. 2007. V. 84. P.136-143. DOI: 10.1016/j.mee.2006.09.020.
Meeks E., Ho P., Ting A., Buss R.J. Simulations of BCl3/Cl2/Ar plasmas with comparisons to diagnostic data. J. Vac. Sci. Technol. A. 1998. V. 16. P. 2227-2239. DOI: 10.1116/1.581332.
Hsu C.C., Nierode M.A., Coburn J.W., Graves D.B. Comparison of model and experiment for Ar, Ar/O2 and Ar/O2/Cl2 inductively coupled plasmas. J. Phys. D Appl. Phys. 2006. V. 39. N 15. P. 3272-3284. DOI: 10.1088/0022-3727/39/15/009.
Raju G.G. Gaseous electronics. Tables, Atoms and Molecules. Boca Raton: CRC Press. 2012. 790 p.
Christophorou L.G., Olthoff J.K. Fundamental electron interactions with plasma processing gases. New York: Springer Science+Business Media LLC. 2004. 776 p.
Efremov A.M., Betelin V.B., Mednikov K.A., Kwon K.-H. Gasphase parameters and reactive-ion etching regimes for Si and SiO2 in binary Ar + CF4/C4F8 mixtures. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 6. P. 25-34. DOI: 10.6060/ivkkt.20216406.6377.