OXIDATIVE DESTRUCTION OF AMOXICILLIN IN PHOTO-FENTON-LIKE OXIDIZING SYSTEM USING SOLAR IRRADIATION

  • Kupriyan D. Alekseev Baikal Institute of Nature Management of SB of the RAS
  • Marina R. Sizykh Baikal Institute of Nature Management of SB of the RAS
  • Agniya A. Batoeva Baikal Institute of Nature Management of SB of the RAS
Keywords: oxidative destruction, mineralization, amoxicillin, advanced oxidation processes, reactive oxygen species, persulfate, solar irradiation

Abstract

The kinetic regularities of oxidative destruction of β-lactam penicillin antibiotics are studied using amoxicillin as example in Fenton-like iron-persulfate system under solar irradiation. The effect of Fe2+ and persulfate concentrations on the antibiotic degradation rate and mineralization in terms of total organic carbon (TOC) decay in combined {Solar/Fe2+ /S2O82-} system was examined. With the increase of oxidant concentration from 0.5 mM to 1.5 mM, the initial reaction rate of amoxicillin degradation increased to 2.5-fold, and the conversion of target compound and TOC mineralization reached 90% and 19%, respectively, after 120 min of solar exposure. Increasing the Fe2+ concentration from 0.1 mM to 0.3 mM resulted in a 1.5-fold increase in the initial reaction rate of amoxicillin oxidation and up to 21% for TOC mineralization. A comparative evaluation of different oxidizing systems was given. It was experimentally established that the efficiency of amoxicillin destruction process increases in the order: {S2O82-} < {Solar} < {Solar/S2O82-} < {Fe2+/S2O82-} <
< {Solar/Fe2+/S2O82-}. It should be noted that TOC mineralization was observed only in combined {Solar/Fe2+/S2O82-} system, which indicates to deep oxidation of intermediates and, consequently, increasing biodegradability of the final reaction products. It was found that in the real water matrix, in the natural surface water of Selenga River, inhibition of amoxicillin degradation and TOC mineralization were observed, due to a greater extent to bicarbonate ions presented in it. The obtained results demonstrate the prospect of using solar irradiation for effective degradation of β-lactam penicillin antibiotics in the combined {Solar/Fe2+/S2O82-} oxidation system.

For citation:

Alekseev K.D., Sizykh M.R., Batoeva A.A. Oxidative destruction of amoxicillin in photo-fenton-like oxidizing system using solar irradiation. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 12. P. 123-130. DOI: 10.6060/ivkkt.20246712.7082.

References

Georgin J., Franco D.S.P., Meili L., Dehmani Y., dos Reis G.S., Lima E.C. Main advances and future prospects in the remediation of the antibiotic amoxicillin with a focus on adsorption technology: A critical review. J. Water Process. Eng. 2023. V. 56. P. 104407. DOI: 10.1016/j.jwpe.2023.104407.

Jasim A.A., Jasim W.A., Jamur J.M.S. HPLC method for the determination of some antibiotic residues in different hospitals wastewater in Baghdad city, Iraq. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V.67. N 6. P.21-28 (in Russian). DOI: 10.6060/ivkkt.20246706.7035.

Rodriguez-Mozaz S., Vaz-Moreira I., Varela Della Giustina S., Llorca M., Barceló D., Schubert S. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environ-ment. Environ. Int. 2020. V. 140. P. 105733. DOI: 10.1016/j.envint.2020.105733.

Githinji L.J.M., Musey M.K., Ankumah R.O. Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water Air Soil Pollut. 2011. V. 219. P. 191-201. DOI: 10.1007/s11270-010-0697-1.

Aryee A.A., Han R., Qu L. Occurrence, detection and removal of amoxicillin in wastewater: A review. J. Clean. Prod. 2022. V. 368. P. 133140. DOI: 10.1016/j.jclepro.2022.133140.

Tufail A., Price W.E., Hai F.I. A critical review on advanced oxidation processes for the removal of trace organ-ic contaminants: A voyage from individual to integrated processes. Chemosphere. 2020. V. 260. 127460. DOI: 10.1016/j.chemosphere.2020.127460.

Zhang Y., Zhao Y.-G., Maqbool F., Hu Y. Removal of antibiotics pollutants in wastewater by UV-based advanced oxidation processes: Influence of water matrix components, processes optimization and application: A review. J. Water Process. Eng. 2022. V. 45. P. 102496. DOI: 10.1016/j.jwpe.2021.102496.

Tsenter I.M., Alekseev K.D., Popova S.A., Garkusheva N.M., Matafonova G.G., Batoev V.B. Efficiency of ultraviolet excilamps for simultaneous treatment and disinfection of water. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V.66. N 9 P. 116-122 (in Russian). DOI: 10.6060/ivkkt.20236609.6820.

Zheng J., Zhang P., Li X., Ge L., Niu J. Insight into typical photo-assisted AOPs for the degradation of antibiotic micropollutants: Mechanisms and research gaps. Chemosphere. 2023. V. 343. P. 140211. DOI: 10.1016/j.chemosphere.2023.140211.

Miklos D.B., Wang W.L., Linden K.G., Drewes J.E., Hübner U. Comparison of UV-AOPs (UV/H2O2, UV/PDS and UV/Chlorine) for TOrC removal from municipal wastewater effluent and optical surrogate model evaluation. Chem. Eng. J. 2019. V. 362. P. 537–547. DOI: 10.1016/j.cej.2019.01.041.

Yang Q., Ma Y., Chen F., Yao F., Sun J., Wang S. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water. Chem. Eng. J. 2019. V. 378. P. 122149. DOI: 10.1016/j.cej.2019.122149.

Zawadzki P. Visible Light–Driven Advanced Oxidation Processes to Remove Emerging Contaminants from Water and Wastewater: a Review. Water Air Soil Pollut. 2022. V. 233. P. 374. DOI: 10.1007/s11270-022-05831-2.

Fendrich M.A., Quaranta A., Orlandi M., Bettonte M., Miotello A. Solar Concentration for Wastewaters Reme-diation: A Review of Materials and Technologies. Appl. Sci. 2018. V. 9. N 1. P. 118. DOI: 10.3390/app9010118.

Khandarkhaeva M., Batoeva A., Sizykh M., Aseev D., Garkusheva N. Photo-Fenton-like degradation of bi-sphenol A by persulfate and solar irradiation. J. Environ. Manage. 2019. V. 249. P. 109348. DOI: 10.1016/j.jenvman.2019.109348.

Sizykh M.R., Batoeva A.A., Aseev D.G. Photo-chemical destruction of Methyl Orange azo dye in a com-bined ironpersulfate system. Zhurn. Sibir Fed. Univer. Khim.. 2023. V. 16. N 3. P. 426–437 (in Russian).

Khandarkhaeva M., Batoeva A., Aseev D., Sizykh M., Tsydenova O. Oxidation of atrazine in aqueous media by solar- enhanced Fenton-like process involving persulfate and ferrous ion. Ecotoxicol. Environ. Saf. 2017. V. 137. P. 35-41. DOI: 10.1016/j.ecoenv.2016.11.013.

Sharma J., Mishra I.M., Kumar V. Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O82− oxidation systems. J. Environ. Manag. 2015. V. 156. P. 266–275. DOI: 10.1016/j.jenvman.2015.03.048.

Brillas E. Progress of antibiotics removal from synthetic and real waters and wastewaters by persulfate-based advanced oxidation processes. J. Environ. Chem. Eng. 2023. V. 11. P. 111303. DOI: 10.1016/j.jece.2023.111303.

Grčić I., Vujević D., Koprivanac N. Modeling the mineralization and discoloration in colored systems by (US)Fe2+/H2O2/S2O82− processes: A proposed degradation pathway. Chem. Eng. J. 2010. V. 157. P. 35–44. DOI: 10.1016/j.cej.2009.10.042.

Sang W., Xu X., Zhan C., Lu W., Jia D., Wang C. Recent advances of antibiotics degradation in different envi-ronment by iron-based catalysts activated persulfate: A review. J. Water Process. Eng. 2022. V. 49. P. 103075. DOI: 10.1016/j.jwpe.2022.103075.

Li Y., Shi Y., Huang D., Wu Y., Dong W. Enhanced acti-vation of persulfate by Fe(III) and catechin without light: Reaction kinetics, parameters and mechanism. J. Hazard. Mater. 2021. V. 413. P. 125420. DOI: 10.1016/j.jhazmat.2021.125420.

Ioannidi A., Arvaniti O.S., Nika M.-C., Aalizadeh R., Thomaidis N.S., Mantzavinos D. Removal of drug losartan in environmental aquatic matrices by heatactivated persulfate: Kinetics, transformation products and synergistic effects. Chemosphere. 2022. V. 287. P. 131952. DOI: 10.1016/j.chemosphere.2021.131952.

Pan M., Ding J., Duan L., Gao G. Sunlight-driven photo-transformation of bisphenol A by Fe(III) in aqueous solu-tion: Photochemical activity and mechanistic aspects. Chemosphere. 2017. V. 167. P. 353–359. DOI: 10.1016/j.chemosphere.2016.09.144.

Salari M., Akbari H., Adibzadeh A., Akbari H. Modeling and optimization of advanced oxidation treatment of dexamethasone from aquatic solutions using electroperoxone/ultrasonic process: Application for real wastewater, electrical energy consumption and degradation pathway. Sep. Purif. Technol. 2023. V. 327. P. 124871. DOI: 10.1016/j.seppur.2023.124871.

Hassani A., Scaria J., Ghanbari F., Nidheesh P.V. Sulfate radicals-based advanced oxidation processes for the degradation of pharmaceuticals and personal care products: A review on relevant activation mechanisms, perfor-mance, and perspectives. Environ. Res. 2023. V. 217. P. 114789. DOI: 10.1016/ j.envres.2022.114789.

Wang J., Wang S. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants. Chem. Eng. J. 2021. V. 411. P. 128392. DOI: 10.1016/j.cej.2020.128392.

Deng Y., Zhao R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. 2015. V. 1.

P. 167–176. DOI: 10.1007/s40726-015-0015-z.

Nikoladze G.I., Mints D.M., Kastalsky A.A. Preparation of water for drinking and industrial water supply. M.: Vyssh. shk. 1984. 368 p. (in Russian).

Published
2024-11-12
How to Cite
Alekseev, K. D., Sizykh, M. R., & Batoeva, A. A. (2024). OXIDATIVE DESTRUCTION OF AMOXICILLIN IN PHOTO-FENTON-LIKE OXIDIZING SYSTEM USING SOLAR IRRADIATION. ChemChemTech, 67(12), 123-130. https://doi.org/10.6060/ivkkt.20246712.7082
Section
ECOLOGICAL PROBLEMS of Chemistry and Chemical Technology