ОСОБЕННОСТИ АЛКОГОЛИЗА МЕТИЛОВЫХ ЭФИРОВ ЖИРНЫХ КИСЛОТ ТРИМЕТИЛОЛПРОПАНОМ
Аннотация
This study analyses the kinetic relationships involved in the transesterification of trimethylolpropane (TMP) and fatty acid methyl esters (FAMEs) derived from vegetable oil to produce biodegradable lubricating oils, based on scientific literature. The work presents the most favourable conditions for the process. In the classical vision of the transesterification process between polyhydric alcohol and methyl esters of fatty acids, a number of inaccuracies have been identified based on theoretical concepts. It is argued that the mechanism of classical sequential parallel reversible processes in the synthesis of mono-, di-, and tri-substituted derivatives of trimethylolpropane and methyl esters of fatty acids can be complemented by certain features. Trimethylolpropane monoester is believed to act as an acyl group carrier, forming the corresponding trimethylolpropane di- and triesters. Additionally, intermolecular interactions expand the classical mechanism of series-parallel reactions. It is suggested that intermolecular interactions between metabolites of 'classical' reactions are possible. In this case, it is difficult to identify these reactions in the overall process as no additional products are formed. The reaction mechanism scheme involving trimethylolpropane monoester showed that the reaction is endergonic and non-spontaneous, indicating that the entire transesterification process is endergonic. Additionally, the work demonstrates the correlation between the likely spatial configuration of trimethylolpropane, its intra- and intermolecular hydrogen bonds, and the Gibbs energies data obtained from literature. The paper presents the overall reaction schemes of the process and the structure of trimethylolpropene anions. It also illustrates a plausible scenario for the interaction of intermediate products, while indicating potential intermediates in all reactions.
For citation:
Kozeeva I.S., Voronov M.S., Sapunov V.N., Kozlovskiy R.A., Yakubov K.S., Petrova V.E. Features of alcoholysis of fatty acid methyl esters by trimethylolpropane. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2025. V. 68. N 1. P. 31-38. DOI: 10.6060/ivkkt.20256801.7095.
Литература
Reportlinker. Global Lubricants Market - SIZE, SHARE, COVID-19 IMPACT & FORECASTS UP TO 2026 [Elec-tronic resource]. URL: https://www.reportlinker.com/ p06321706/Global-Lubricants-Market-SIZE-SHARE-COVID-19-IMPACT-FORECASTS-UP-TO.html?utm_source=GNW (accessed: 22.05.2023).
Uosukainen E., Linko Y., Lämsä M., Tervakangas T., Linko P. Transesterification of Trimethylolpropane and Rapeseed Oil Methyl Ester. JAOCS. 1998. V. 75. N 11. P. 1557–1563. DOI: 10.1007/s11746-998-0094-8.
Thanigaiselvan R., Sree Renga Raja T., Karthik R. Investigations on eco friendly insulating fluids from rape-seed and pongamia pinnata oils for power transformer applications. J. Electr. Eng. Technol. 2015. V. 10. N 6. P. 2348–2355. DOI: 10.5370/JEET.2015.10.6.2348.
Tonkonogov B.P., Kilyakova A.Y., Shumakaeva S.Z., Vinokurov V.A., Safieva R.Z., Popova O.V., Parenago O.P. Using of esters as dispersion medium of polyurea plastic greases. ChemChemTech. 2019. V. 62. N 9. P. 73–78. DOI: 10.6060/ivkkt.20196209.5909.
Levanova S. V., Krasnykh E.L., Moiseeva S. V., Saf-ronov S.P., Glazko I.L. Scientific and technological features of the synthesis of new ester plasticizers based on renewable raw materials. ChemChemTech. 2021. V. 64. N 6. P. 69–75. DOI: 10.6060/ivkkt.20216406.6369.
Wang K., Wang F., Li J., Huang Z., Lou Z., Han Q., Zhao Q., Hu K. Synthesis of trimethylolpropane fatty acid triester as a high performance electrical insulating oil. J. Ind. Crops Products. 2019. V. 142. P. 111834. DOI: 10.1016/J.INDCROP.2019.111834.
Negi P., Singh Y., Tiwari K. A review on the production and characterization methods of bio-based lubricants. Mater. Today: Proc. 2021. V. 46. P. 10503–10506. DOI: 10.1016/J.MATPR.2020.12.1211.
Nie J., Shen J., Shim Y.Y., Tse T.J., Reaney M.J.T. Synthesis of Trimethylolpropane Esters by Base-Catalyzed Transesterification. Europ. J. Lipid Sci. Tech-nol. 2020. V. 122. N 3. P. 1–10. DOI: 10.1002/ejlt.201900207.
Shrivastava S., Prajapati P., Virendra, Srivastava P., Lodhi A.P.S., Kumar D., Sharma V., Srivastava S.K., Agarwal D.D. Chemical transesterification of soybean oil as a feedstock for stable biodiesel and biolubricant production by using Zn Al hydrotalcites as a catalyst and perform tribological assessment. J. Indl Crops Prod. 2023. V. 192. P. 116002. DOI: 10.1016/J.INDCROP.2022.116002.
Emelyanov V. V., Krasnykh E.L., Fetisov D.A., Levanova S. V., Shakun V.A. Features of the synthesis of pentaerythritol esters and carboxylic acids of aliphatic isomeric structure. Tonk. Khim. Tekhnol. 2022. V. 17. N 1. P. 7–17 (in Russian). DOI: 10.32362/2410-6593-2022-17-1-7-17.
Yunus R., Fakhru A., Ooi T.L., Biak D.R.A., Iyuke S.E. Kinetics of Transesterification of Palm-Based Methyl Es-ters with Trimethylolpropane. JAOCS. 2004. V. 81. N 5. P. 497–503. DOI: 10.1007/s11746-004-0930-7.
Abd Hamid H., Yunus R., Choong T.S.Y. Utilization of MATLAB to simulate kinetics of transesterification of palm oilbased methyl esters with trimethylolpropane for biodegradable synthetic lubricant synthesis. Chem. Prod. Proc. Model. 2010. V. 5. N 1. DOI: 10.2202/1934-2659.1458.
Elmelawy M.S., El-Meligy A., Mawgoud H.A., Morshedy A.S., Hanafy S.A., Elsayed I.E. Synthesis and kinetics study of trimethylolpropane fatty acid triester from oleic acid methyl ester as potential biolubricant. Biomass Convers. Biorefin. 2023. V. 13. P. 1645-1657. DOI: 10.1007/s13399-020-01220-z.
Menkiti M., Anaehobi H., Nnaji P. Process optimization and kinetics of biolubricant synthesis from fluted pumpkin seed. Europ. Sci. J. 2015. V. 11. N 27. P. 30-47.
Ramadhas A.S., Jayaraj S., Muraleedharan C. Bio-diesel production from high FFA rubber seed oil. Fuel. 2005. V. 84. N 4. P. 335–340. DOI: 10.1016/J.FUEL.2004.09.016.
Uosukainen E., Linko Y.Y., Lämsä M., Tervakangas T., Linko P. Transesterification of trimethylolpropane and rapeseed oil methyl ester to environmentally acceptable lubricants. J. Am. Oil Chem. Soc. 1998. V. 75. N 11. P. 1557–1563. DOI: 10.1007/S11746-998-0094-8.
Amirkhanov I.R., Voronov M.S., Kaleeva E.S., Sanchy D.M., Gladysheva A.A. Determination of fatty acid me-thyl esters transesterification products using 1H- NMR. Usp. Khim. Khim. Tekhnol. 2018. V. 32. N 5. P. 64–66 (in Russian).
Aziz N.A.M., Hamid H.A., Yunus R., Abbas Z., Omar R., Rashid U., Syam A.M. Kinetics and thermodynamics of synthesis of palm oil-based trimethylolpropane triester using microwave irradiation. J. Saudi Chem. Soc. 2020. V. 24. N 8. P. 552–566. DOI: 10.1016/J.JSCS.2020.05.006.
Lieu T., Yusup S., Moniruzzaman M. Kinetic study on microwave-assisted esterification of free fatty acids de-rived from Ceiba pentandra Seed Oil. Bioresour, Technol. 2016. V. 211. P. 248–256. DOI: 10.1016/J.BIORTECH.2016.03.105.
Howard D.L., Jørgensen P., Kjaergaard H.G. Weak intramolecular interactions in ethylene glycol identified by vapor phase OH-stretching overtone spectroscopy. J. Am. Chem. Soc. 2005. V. 127. N 48. P. 17096–17103. DOI: 10.1021/ja055827d.
Takahashi K. Theoretical study on the effect of intramo-lecular hydrogen bonding on OH stretching overtone de-cay lifetime of ethylene glycol, 1,3-propanediol, and 1,4-butanediol. Phys. Chem. Chem. Phys. 2010. V. 12. N 42. P. 13950–13961. DOI: 10.1039/C0CP00788A.
Shokri A., Schmidt J., Wang X. Bin, Kass S.R. Hydrogen bonded arrays: The power of multiple hydrogen bonds. J. Am. Chem. Soc. 2012. V. 134. N 4. P. 2094–2099. DOI: 10.1021/JA2081907.
Kol’tsov N.I. Description of Critical Forms of Multiple Station States in the Kinetics of Catalytic Reactions. ChemChemTech. [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 8. P. 6–21. DOI: 10.6060/ivkkt.20236608.6793.