СТРАТЕГИИ ИСПОЛЬЗОВАНИЯ ЖЕЛЕЗОСОДЕРЖАЩИХ ОТХОДОВ ПРИ ПОЛУЧЕНИИ НАУКОЕМКИХ ПРОДУКТОВ ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ
Аннотация
В статье приведен обзор результатов исследований красного шлама как отхода процессов переработки бокситов в алюминий. Проведен анализ распространенности красного шлама в мире, особенностей его хранения и утилизации, а также возможности его переработки в необходимые для производства различных материалов продукты и полупродукты. Приводятся особенности химического состава красного шлама в зависимости от места добычи и переработки исходного сырья. Представлен анализ мировой практики по реализации возможности переработки красного шлама различными методиками. Анализ литературных данных показал, что существует большое количество научных групп, занимающихся проблемами переработки красного шлама. Основными полезными продуктами переработки красного шлама являются оксиды различных металлов, редкоземельные и радиоактивные металлы. Продукты переработки красного шлама могут быть использованы в строительстве, очистке сточных вод, сельском хозяйстве и т.д. В статье одним из наиболее значимых разделов является защита окружающей среды от вредного воздействия красного шлама. Представлены наработки мировых ученых по минимизации такого воздействия и рассмотрены меры, которые необходимо принять в дальнейшем для защиты окружающей среды. Данная обзорная статья позволит систематизировать имеющиеся научные разработки по переработке красного шлама и может быть использована как основа для дальнейшего изучения возможности получения промышленно важных продуктов из отходов металлургической промышленности.
Для цитирования:
Афинеевский А.В., Прозоров Д.А., Смирнов Д.В., Гордина Н.Е. Стратегии использования железосодержащих отходов при получении наукоемких продуктов химической промышленности. Изв. вузов. Химия и хим. технология. 2024. Т. 67. Вып. 11. С. 6-14. DOI: 10.6060/ivkkt.20246711.7111.
Литература
Barinkova A.A., Piirainen V.Yu., Barinkov V.M. New composite material with neutralized red mud. Inform.-Tekhnol. Vestn. 2021. N 2. P. 156-169 (in Russian).
Zinoveev D.V., Grudinsky P.I., Dyubanov V.G., Kovalenko L.V., Leontyev L.I. Review of global practices in red mud processing. Part 1. Pyrometallurgical methods. Izv. Vuzov. Chernaya Metallurgiya. 2018. V. 61. N 11. P. 843-858 (in Russian). DOI: 10.17073/0368-0797-2018-11-843-858.
Wang M., Liu X. Applications of red mud as an environ-mental remediation material: A review. J. Hazard. Mater. 2020. V. 408. P. 124420. DOI: 10.1016/j.jhazmat.2020.124420.
Anisimov L.A., Dontsova O.L. Deposits of rare earth elements are a promising strategic resource for Russia. Nedra Povolzh’ya Prikaspiya. 2023. N 112. P. 11-20 (in Russian). DOI: 10.24412/1997-8316-2023-112-11-20.
Jafarova S.T., Akhmedov M.M., Abbasova N.I. On the issue of reusing waste from the aluminum industry - red mud. Abstracts of reports of the V International Conference-School on Chemical Technology HT'16. Volgograd. 2016. P. 19-20 (in Russian).
Niskovskaya E.V. Environmental protection and rational use of natural resources in construction. M.: Prospekt. 2015. 312 p. (in Russian).
Vodolazov L.I., Molchanova T.V., Malikov V.A. New methods and new technology for sulfuric acid neutralization and processing of red mud-waste from alumina production into building materials and coagulants with the associated production of pure scandium salts, rare earths and aluminum hydroxide. Gorn. Inform-Analit. Zhurn. (Nauch.-Tekhn. Zhurn.). 1995. N 2. P. 99-102 (in Russian).
https://www.statista.com/statistics/264963/global-alumina-production-by-country/ (online on 02.04.2024)
Yurkov A.L., Kuroshev I.S., Dobrokhotova M.V. Aluminum production. M.: Renome. 2020. 110 p. (in Russian).
Loginova I.V., Kyrchikov A.V., Penyugalova N.P. Alumina production technology. Ekaterinburg: Izd-vo Ural. un-ta. 2015. 336 p. (in Russian).
Samal S. Utilization of Red Mud as a Source for Metal Ions—A Review. Materials. 2021. V. 14. N 9. P. 2211. DOI: 10.3390/ma14092211.
Medvedev A.S., Kirov S.S., Khairullina R.T., Suss A.G. Carbonation leaching of scandium from red mud using preliminary gasification of the pulp with carbon dioxide. Nonferrous Metals. 2016. N 6. P. 67-73. DOI: 10.17580/tsm.2016.06.09.
Paramguru R.K., Rath P.C., Misra V.N. Trends in red mud utilization–a review. Miner. Process. Extr. Metall. Rev. 2004. V. 26. N 1. P. 1-29. DOI: 10.1080/08827500490477603.
Sutar H., Mishra S.C., Sahoo S., Chakraverty A.P., Maharana H.S. Progress of red mud utilization: An overview. Am. Chem. Sci. J. 2014. V. 4. N 3. P. 255-279. DOI: 10.9734/ACSJ/2014/7258.
Patel S., Pal B.K. Current status of an industrial waste: red mud an overview. Ijltemas. 2015. V. 4. N 8. P. 1-16.
Reddy P.S., Reddy N.G., Serjun V.Z., Mohanty B., Das S.K., Reddy K.R., Rao B.H. Properties and assessment of applications of red mud (bauxite residue): current status and research needs. Waste Biomass Valorization. 2021. V. 12. P. 1185-1217. DOI: 10.1007/s12649-020-01089-z.
Rai S., Wasewar K.L., Mukhopadhyay J., Yoo C.K., Uslu H. Neutralization and utilization of red mud for its better waste management. Arch. Environ. Sci. 2012. V. 6. P. 13–33.
Reddy N.G., Rao B.H., Reddy K.R. Biopolymer amendment for mitigating dispersive characteristics of red mud waste. Geotech. Lett. 2018. V. 8. N 3. P. 201–207. DOI: 10.1680/jgele.18.00033.
Paramguru R.K., Rath P.C., Misra V.N. Trends in red mud utilization—a review. Min. Process. Extr. Metall. Rev. 2005. V. 26. N 1. P. 1–29. DOI: 10.1080/08827500490477603.
Kirichenko A.G., Nasekan Yu.P., Kolesnik N.F. Influence of the granulometric composition of red mud on the kinetics of carburization. Vestn. NTI «KHPI». 2011. N 33. P. 7-11 (in Russian).
Rakhimova O.V., Seredkina O.R., Lanovetskiy S.V. Characteristics of floccules of claysalt sludge formedby polyacrylamide and its copolymers. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 5. P. 19-25 (in Russian). DOI: 10.6060/ivkkt.20206305.6086.
Archambo M., Kawatra S.K. Red mud: Fundamentals and new avenues for utilization. Miner. Process. Extr. Metall. Rev. 2021. V. 42. N 7. P. 427-450. DOI: 10.1080/08827508.2020.1781109.
Charan K., Bhattacharyya P. Vermicomposted red mud-An up-and-coming approach towards soil fertility and crop quality. J. Crop Weed. 2023. V. 19. N 2. P. 36-51. DOI: 10.22271/09746315.2023.v19.i2.1701.
Naja G.M., Volesky B. Toxicity and sources of Pb, Cd, Hg, Cr, As, and radionuclides in the environment. Handbook of advanced industrial and hazardous wastes management. Florida: Crc Press. 2017. P. 855-903. DOI: 10.1201/9781315117423-27.
Khairul M.A., Zanganeh J., Moghtaderi B. The composition, recycling and utilisation of Bayer red mud. Resour. Conserv. Recycl. 2019. V. 141. P. 483-498. DOI: 10.1016/j.resconrec.2018.11.006.
Ivankov S.I., Shubov L.Ya., Troitsky A.V., Kaplin A.I. Rational patented technologies for processing and disposal of solid industrial waste. Review. Part 3. Probl. Okruzh. Sredy Prirod. Resursov. 2022. N 9. P. 3-116 (in Russian). DOI: 10.36535/0235-5019-2022-09-1.
Babel A. Dosing of pigments for coloring sandlime brick. Construct. Mater. 2012. N 9. P. 22-24.
Atan E., Sutcu M., Cam A.S. Combined effects of bayer process bauxite waste (red mud) and agricultural waste on technological properties of fired clay bricks. J. Build. Eng. 2021. V. 43. P. 103194. DOI: 10.1016/j.jobe.2021.103194.
Putrevu M., Thiyagarajan J.S., Pasla D., Kabeer K.I.S.A., Bisht K. Valorization of red mud waste for cleaner production of construction materials. J. Hazard. Toxic Radioact. Waste. 2021. V. 25. N 4. P. 03121002. DOI: 10.1061/(ASCE)HZ.2153-5515.0000629.
Patangia J., Saravanan T.J., Kabeer K.I.S.A., Bisht K. Study on the utilization of red mud (bauxite waste) as a supplementary cementitious material: Pathway to attaining sustainable development goals. Construct. Build. Mater. 2023. V. 375. P. 131005. DOI: 10.1016/j.conbuildmat.2023.131005.
Tang W., Khavarian M., Yousefi A. Red Mud. Sustainable concrete made with ashes and dust from different sources. Boston: Woodhead Publ. 2022. P. 577-606. DOI: 10.1016/B978-0-12-824050-2.00013-9.
Liu Y., Naidu R., Ming H. Red mud as an amendment for pollutants in solid and liquid phases. Geoderma. 2011. V. 163. N 1-2. P. 1-12. DOI: 10.1016/j.geoderma.2011.04.002.
Vu X.M., Nguyen T.D., Nguyen V.G., Bui C.T., Le T.M.H. Study on adsorption of fluoride ion onto Vietnamese red mud activated with sulfuric acid. ChemChemTech. [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 3. P. 108-112 (in Russian). DOI: 10.6060/ivkkt201962fp.5868a.
Wang S., Ang H.M., Tadé M.O. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere. 2008. V. 72. N 11. P. 1621-1635. DOI: 10.1016/j.chemosphere.2008.05.013.
Xue S., Zhu F., Kong X., Wu C., Huang L., Huang N., Hartley W. A review of the characterization and revegetation of bauxite residues (Red mud). Environ. Sci. Pollut. Res. 2016. V. 23. P. 1120-1132. DOI: 10.1007/s11356-015-4558-8.
Jiang X., Zhang X., Cheng G., Liu J. Assessing the potential of red mud and dehydrated mineral mud mixtures as soil matrix for revegetation. J. Environ. Manag. 2023. V. 344. P. 118393. DOI: 10.1016/j.jenvman.2023.118393.
Kumar A. Red mud (RM) and soil amelioration: improvement in soil quality. Amelioration Technology for Soil Sustainability. USA: IGI Global. 2019. P. 151-167. DOI: 10.4018/978-1-5225-7940-3.ch009.
Zhou R., Liu X., Luo L., Zhou Y., Wei J., Chen A., Tang L., Wu H., Deng Y., Zhang F., Wang Y. Remediation of Cu, Pb, Zn and Cd-contaminated agricultural soil using a combined red mud and compost amendment. Int. Bio-deterior. Biodegradation. 2017. V. 118. P. 73-81. DOI: 10.1016/j.ibiod.2017.01.023.
Tsivadze A.Yu. Selective separation of chemical elements of the periodic table with similar properties is the basis of new technologies. Vestn. Ross. Akad. Nauk. 2020. V. 90. N 4. P. 320-330 (in Russian). DOI: 10.31857/S0869587320040167.
Borra C.R., Blanpain B., Pontikes Y., Binnemans K., Gerven T.V. Recovery of rare earths and other valuable metals from bauxite residue (red mud): a review. J. Sustain. Metall. 2016. V. 2. P. 365-386. DOI: 10.1007/s40831-016-0068-2.
Wang L., Sun N., Tang H., Sun W. A review on compre-hensive utilization of red mud and prospect analysis. Minerals. 2019. V. 9. N 6. P. 362. DOI: 10.3390/min9060362.
Sushil S., Batra V.S. Catalytic applications of red mud, an aluminium industry waste: A review. Appl. Catal. B: Envi-ron. 2008. V. 81. N 1-2. P. 64-77. DOI: 10.1016/j.apcatb.2007.12.002.
Liu Q., Xin R., Li C., Xu C., Yang J. Application of red mud as a basic catalyst for biodiesel production. J. Environ. Sci. 2013. V. 25. N 4. P. 823-829. DOI: 10.1016/S1001-0742(12)60067-9.
de Sousa Cordeiro E., Scaratti G., Soares de Souza D.C., Nickel C.D.M., Jose H.J., Moreira R.F.P.M., Junior A.D.N. Red mud as catalyst for the treatment of pharmaceuticals compounds by advanced oxidation processes–A review. Environ. Nanotechnol. Monit. Manag. 2024. V. 21. P. 100938. DOI: 10.1016/j.enmm.2024.100938.
Sharafeev S.M., Sergeev N.P., Mezhenin A.V. Magnesium and iron oxides influence on sintering processes and phase formation of anorthite ceramics based on natural raw materials. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 4. P. 101-107. DOI: 10.6060/ivkkt.20246704.6940.
Dokuchaev I.S., Maximov N.М., Tyshchenko V.A. Investigation of the thermal cracking process in the presence of a regenerated spent hydrotreating catalyst. Ros. Khim. Zh. 2022. V. LXVI. N 1. P. 57-65 (in Russian). DOI: 10.6060/rcj.2022661.8.
Das B., Mohanty K. A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud. Renew. Energy. 2019. V. 143. P. 1791-1811. DOI: 10.1016/j.renene.2019.05.114.
Araujo R.O., Santos V.O., Ribeiro F., Chaar J.S., Pereira A.M., Falcao N.P.S., Souza L.K.C. Magnetic acid cata-lyst produced from acai seeds and red mud for biofuel production. Energy Convers. Manag. 2021. V. 228. P. 113636. DOI: 10.1016/j.enconman.2020.113636.