ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ МОЛЕКУЛЯРНОГО НАСЛАИВАНИЯ MoO3 НА β-КРИСТОБАЛИТЕ И МОНОСЛОЯХ MoOX И AlOX МЕТОДОМ DFT: СРАВНИТЕЛЬНАЯ ОЦЕНКА РЕАКЦИЙ MoOCl4 И MoO2Cl2 С H2O
Аннотация
Проведено квантово-химическое моделирование процессов молекулярного наслаивания оксида молибдена (VI) на поверхностях β-кристобалита и аморфных монослоев МоОх и AlOx на β-кристобалите с использованием в качестве реагентов газообразных MoOCl4, MoO2Cl2 и H2O. С помощью метода обобщенного градиентного приближения теории функционала плотности вычислены изменения энергии Гиббса реакций молекулярного наслаивания (ΔG°) в диапазоне температур от 273,15 до 650,15 K. Для газообразных веществ расчеты осуществляли в приближении идеального газа, а для компонентов твердой фазы исключали вклады поступательной и вращательной составляющих движения. Согласно полученным данным, в рассматриваемом температурном диапазоне прогнозируется наиболее высокая реакционная способность поверхности монослоя аморфного оксида алюминия на β-кристобалите. Кроме того, выявлено, что соединение MoOCl4 обладает большей химической активностью по сравнению с MoO2Cl2 в отношении к рассматриваемым подложкам. Дано объяснение отсутствию роста молибденоксидных структур на поверхности β-кристобалита и возможным причинам большей реакционной способности монослоя оксида алюминия по сравнению с поверхностью β-кристобалита и аморфной поверхностью монослоя МоОх. Применяемый нами расчетный подход в целом может помочь в понимании фундаментальных аспектов нуклеации и роста пленок МоО3 и смешанных оксидных материалов типа AlxMoyOz на различных поверхностях. Также были рассчитаны частоты колебательных мод в структурах, содержащих молибден, на поверхности подложек в ангармоническом приближении vSi-O-Mo = 901-1002 см-1, vAl-O-Mo =921-1015 см-1, vMo-O-Mo = 716-889 см-1, vMo=O = 972-1010 см-1.
Для цитирования:
Гаджимурадов С.Г., Сулейманов С.И., Максумова А.М., Дроздов Е.О., Абдулагатов И.М., Абдулагатов А.И. Термодинамическое моделирование процессов молекулярного наслаивания MoO3 на β-кристобалите и монослоях MoOx и AlOx методом DFT: сравнительная оценка реакций MoOCl4 и MoO2Cl2 с H2O. Изв. вузов. Химия и хим. технология. 2025. Т. 68. Вып. 3. С. 50-63. DOI: 10.6060/ivkkt.20256803.7132.
Литература
Li W., Cheng F., Tao Zh., Chen J. Vapor-Transportation Preparation and Reversible Lithium Intercala-tion/Deintercalation of ɑ-MoO3 Microrods. J. Phys. Chem. B. 2006. V. 110. N 1. P. 119–124. DOI: 10.1021/jp0553784.
Dixit D., Madhuri K.V. Electrochromism in MoO3 nanostructured thin films. Superlatt. Microstruct. 2021. V. 156. DOI: 10.1016/j.spmi.2021.106936.
Hsu C., Chan C., Huang H., Peng C., Hsu W. Electro-chromic properties of nanocrystalline MoO3 thin films. Thin Solid Films. 2008. V. 516. N 15. P. 4839-4844. DOI: 10.1007/s10971-009-2055-6.
Sonnemans J., Janus J.M., Mars P. Surface Structure and Catalytic Activity of a Reduced Molybdenum Oxide-Alumina Catalyst. The Mechanism of Pyridine Hydrogenation and Piperidine Dehydrogenation. J. Phys. Chem. 1976. V. 80. N 19. P. 2107-2110. DOI: 10.1021/j100560a011.
Lietti L., Nova I., Ramis G., Dall'Acqua L., Busca G., Giamello E., Forzatti P., Bregani F. Characterization and Reactivity of V2O5–MoO3/TiO2 De-NOx SCR Catalysts. J. Catal. 1999. V. 187. N 2. P. 419-435. DOI: 10.1021/j100560a011.
Shafaei S., Van D.O., Fey T., Koch M., Kraus T., Guggenbichler J., Zollfrank C. Enhancement of the antimicro-bial properties of orthorhombic molybdenum trioxide by thermal induced fracturing of the hydrates. Mater. Sci. Eng.: C. 2016. V. 58. P. 1064-1070. DOI: 10.1016/j.msec.2015.09.069.
Mai L., Yang F., Zhao Y., Xu X., Xu L., Hu B., Luo Y., Liu H. Molybdenum oxide nanowires: synthesis & properties. Mater. Today. 2011. V. 14. N. 7-8. P. 346-353. DOI: 10.1016/S1369-7021(11)70165-1.
Matsumoto Y., Shimanouchi R. Synthesis of Al2(MoO4)3 by Two Distinct Processes, Hydrothermal Reaction and Solid-State Reaction. Procedia Eng. 2016. V. 148. P. 158–162. DOI: 10.1016/j.proeng.2016.06.507.
Erdemir A.A. Crystal-Chemical Approach to Lubrication by Solid Oxides. Tribol. Lett. 2000. V. 8. N 2–3. P. 97–102. DOI: 10.1023/A:1019183101329.
Erdemir A.A. Crystal Chemical Approach to the Formulation of Self-Lubricating Nanocomposite Coatings. Surf. Coat. Technol. 2005. V. 200. N 5-6. P. 1792–1796. DOI: 10.1016/j.surfcoat.2005.08.054.
Davis B.E., Strandwitz N.C. Aluminum Oxide Passivating Tunneling Interlayers for Molybdenum Oxide Hole-Selective Contacts. IEEE J. Photovolt. 2020. V. 10. N 3. P. 722-728. DOI: 10.1109/jphotov.2020.2973447.
Chowdhury S., Khokhar M.Q., Pham D.P., Yi J. Al2O3/MoOx Hole-Selective Passivating Contact for Silicon Heterojunction Solar Cell. ECS J. Solid State Sci. Technol. 2022. V. 11. N 1. DOI: 10.1149/2162-8777/ac4d83.
Malygin A.A. From chemical reactions on a solid surface to molecular layering nanotechnology (a review). Vestn. SPbG-TU(TI). N 1 (27). P. 14-24 (in Russian).
Koltsov S.I., Aleskovskii V.B. The effect of the degree of dehydration of silica gel on the mechanism of hydrolysis of adsorbed titanium tetrachloride. Zhurn. Fiz.Khim. 1968. V. 42. P. 1210 (in Russian).
Maksumova A.M., Abdulagatov I.M., Rabadаnov M.Kh., Abdulagatov A.I. Growth of aluminum molyb-denum oxide films by atomic layer deposition with using trimethylaluminum, molybdenum oxytetrachloride, and water. Neonorg. Mater. 2023. V. 59. N 4. P. 384–393 (in Russian). DOI: 10.1134/S0020168523040052.
Maksumova A.M., Gadzhimuradov S.G., Abdulagatov I.M., Abdulagatov A.I. Atomic layer deposition (ASO) of molybdenum oxide using MoOCl4 or MoO2Cl2 and H2O. Coll. abst. Kuznetsov readings-2024. 7th seminar on chemical deposition from the gas phase. 2024. P. 80 (in Russian).
Maksumova A.M., Bodalev I.S., Abdulagatov I.M., Rabadаnov M.Kh., Abdulagatov A.I. Characterization of MoO3 and TixMoyOz thin films prepared by atomic layer deposition. Zhurn. Neorg. Khim. 2023. V. 69. N 1. P. 110–119 (in Russian). DOI: 10.1134/S003602362360274X.
Kvalvik J.N., Borgersen J., Hansen P.-A., Nilsen O. Area-Selective Atomic Layer Deposition of Molybdenum Oxide. Vac. Sci. Technol. A. 2020. V. 38. P. 402-406. DOI: 10.1116/6.0000219.
Maksumova A.M., Abdulagatov I.M., Palchaev D.K., Rabadаnov M.Kh., Abdulagatov A.I. Studying the atomic layer deposition of molybdenum oxide and titanium–molybdenum oxide films using quartz crystal microbalance. Russ. J. Phys. Chem. 2022. V. 96. N 10. P. 2206–2214. DOI: 10.31857/S0044453722100181.
Neese F., Wennmohs F., Becker U., Riplinger C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020. V. 152. P. 224108. DOI: 10.1063/5.0004608.
Perdew J. P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996. V. 77. N 18. P. 1396. DOI: 10.1103/PhysRevLett.77.3865.
Weigenda F., Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem Chem Phys. 2005. V. 7. N 18. P. 3297–3305. DOI: 10.1039/B508541A.
Becke A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993. V. 98. N 7. P. 5648-5652. DOI: 10.1063/1.464913.
Adamo C., Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999. V. 110. N 13. P. 6158-6169. DOI: 10.1063/1.478522.
Grimme S., Hansen A., Ehlert S., Mewes J.-M. r2SCAN-3c: An efficient "Swiss army knife" composite electronic-structure method. J. Chem. Phys. 2021. V. 154. N 6. P. 64103. DOI: 10.26434/chemrxiv.13333520.
Zharskii I.M., Zasorin E.Z., Spiridonov V.P., Novikov G.I., Kupreev V.N. Electronographic study of the structure of a molecule MoO2Cl2. Koord. Khim. 1975. V. 1. N 4. P. 574-576 (in Russian).
Taylor J.C., Waugh A.B. Crystal and molecular structure of molybdenum tetrachloride oxide by neutron and X-ray diffraction. J.C.S. Dalton Trans. 1980. V. 10. P. 2006-2009. DOI: 10.1039/DT9800002006.
Neikirk D.l., Fagerli J.C., Smith M.L., Mosman D., De-vore T.C. The infrared spectra of the MoOCl, MoO2Cl2, WOCl, MoO2Cl2, MoO2, MoO3 and Mo3O9 gaseous molecules. J. Molec. Struct. 1991. V. 244. P. 165-181. DOI: 10.1016/0022-2860(91)80154-v.
Bаrraclough C.G., Kew D.J. Infrared spectral studies and some reactions with common solvents of molybdenum oxide tetrachloride and molybdenum oxide trichloride. Aust. J. Chem. 1970. V. 23. P. 2387-2396. DOI: 10.1071/CH9702387.
Zhurko G.A. Chemcraft - graphical program for visualization of quantum chemistry computations. Ivanovo, Russia. 2005. Version 1.8, build 654. https: chemcraftprog.com
Drozdov E.O., Gukova A.N., Dubrovensky S.D., Malygin A.A. Quantum chemical analysis and experimental synthesis of titanium-vanadium-containing coatings on the silica surface from a mixture of TiCl4 and VOCl3 vapors. Zhurn. Obshch. Khim. 2016. V. 86. N. 9. C. 1551-1561 (in Russian). DOI: 10.1134/S1070363216090231.
Drozdov E.O., Dubrovensky S.D., Malygin A.A. Quantum chemical analysis of the processes of synthesis of vana-dioxide structures on the surface of silica. Zhurn. Obshch. Khim. 2020. V. 90. N 5. P. 795–805 (in Russian). DOI: 10.1134/S1070363220050217.
Malygin A.A., Dubrovensky S.D. Quantum-chemical approaches to identification of nanostructures synthesized by molecular layering technique. Russ. J. Gen. Chem. 2010. V. 80. N 3. P. 643–657. DOI: 10.1134/S1070363210030448.
Haukka S., Lakomaa E., Root A. An IR and NMR study of the chemisorption of TiCl4 on silica. J. Phys. Chem. 1993. V. 97. N 19. P. 5085-5094. DOI: 10.1021/j100121a040.
Haukka S., Lakomaa E.-L., Jylha O., Vilhunen J., Hornytzkyj S. Dispersion and Distribution of titanium spe-cies bound to silica from TiCl4. Langmuir. 1993. V. 9. N 12. P. 3497-3506. DOI: 10.1021/la00036a026.
Chukin G.D. Surface chemistry and structure of dispersed silica. M.: Tipografiya Paladin, OOO «Printa». 2008. 172 p. (in Russian).
Chukin G.D. The structure of aluminum oxide and hydrodesulfurization catalysts. Mechanisms of reactions. M.: Tipografiya Paladin, OOO «Printa». 2010. 288 p. (in Rus-sian).
Valyon J., Henker M., Wendlandt K.P. Acidity of SiO2, SiO2−Al2O3 and γ-Al2O3 supports and supported molybdena catalysts. React. Kinet. Catal. Lett. 1989. V. 38. N 2. P. 273–279. DOI: 10.1007/bf02062118.
Pankrushina E.A., Mikhaylovskaya Z.A., Shchapova Yu.V., Votyakov S.L. In situ temperature-dependent raman spectroscopy and lattice dynamics of scheelite and scheelite-like compounds. Geodyn. Tectonophys. 2022. V. 13. N 2. P. 0609. DOI: 10.5800/GT-2022-13-2s-0609.
Abramenko V.L. Synthesis and IR Spectroscopic Study of Molecular Complexes of Molybdenum Oxotetrachloride with Azomethines. Russ. J. Coord. Chem. 2001. V. 27. N 11. P. 819–822. DOI: 10.1023/A:1012575224360.
Chen M.S., Santra A.K., Goodman D.W. Structure of thin SiO2 films grown on Mo(112). Phys. Rev. B. 2004. V. 69. 155404. DOI: 10.1103/physrevb.69.155404.
Iftiquar S.M. Structural Studies on Semiconducting Hydro-genated Amorphous Silicon Oxide Films. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes. 2002. V. 6. N 1. 19 p. DOI: 10.1615/HighTempMatProc.v6.i1.40.
Tarasevich B.N. IR spectra of the main classes of organic compounds. Reference materials. M.: MGU. 2012. 55 p. (in Russian).
Jollands M.C., Blanchard M., Balan E. Structure and theoretical infrared spectra of OH defects in quartz. Eur. J. Mineral. 2020. V. 32. P. 311–323. DOI: 10.5194/ejm-32-311-2020.
Milekhin A., Friedrich M., Hiller K. Infrared study of Si surfaces and bonded Si wafers. Semicond. Sci. Technol. 1999. V. 14. P. 70–73. DOI: 10.1088/0268-1242/14/1/009.
Chithambararaj A., Chandra Bose A. Investigation on structural, thermal, optical and sensing properties of meta-stable hexagonal MoO3 nanocrystals of one dimensional structure. Beilstein J. Nanotechnol. 2011. V. 2. P. 585–592. DOI: 10.3762/bjnano.2.62.
Nikishina E.E., Lebedeva E.N., Drobot D.V. Molyb-denum(VI) oxide: New synthesis methods and properties. Tonkie Khim. Tekhnol. 2020. V. 15. N 2. P. 67-76 (in Rus-sian). DOI:10.32362/2410-6593-2020-15-2-67-76.
Konings R.J.M., Booij A.S. Infrared spectra of NbCl, and MoCl, in the gas phase. Vibrat. Spectrosc. 1994. V. 6. P. 345-349. DOI: 10.1016/0924-2031(93)e0067-c.
Chithambararaj A., Rameshbabu N., Chandra Bose A. Study of microwave assisted growth of meta-stable 1-D h-MoO3. Sci. Adv. Mater. 2014. V. 6. P. 1–11. DOI: 10.1166/sam.2014.1797.
Handzlik J., Ogonowski J. Structure of Isolated Molyb-denum(VI) and Molybdenum(IV) Oxide Species on Silica: Periodic and Cluster DFT Studies. J. Phys. Chem. C. 2012. V. 116. N 9. P. 5571–5584. DOI: 10.1021/jp207385h.
Kiselev A.V., Lygin V.I. Infrared spectra of surface com-pounds and adsorbed substances. M.: Nauka. 1972. 459 p.
Drozdov E.O., Buzina D.V., Malkov A.A., Malygin A.A. Quantum chemical modeling of thermally induced structural transformations of vanadium oxochloride groups on silica surface. Vestn. SPbGTU(TI). 2022. N 63(89). P. 35-44 (in Russian). DOI: 10.36807/1998-9849-2022-63-89-35-44.
Chetverikova A.G., Kanygina O.N., Alpyssbaeva G.Z., Yudin A.A., Sokabaeva S.S. Infrared spectroscopy as a method for determining the structural responses of natural clays to microwave exposure. Kondensir. Sredy Mezhfazn. Granitsy. 2019. V. 21. N 3. P. 446-454 (in Russian). DOI: 10.17308/kcmf.2019.21/1155.
Filatova N.V., Kosenko N.F., Denisova O.P., Sadkova K.S. The physicochemical investigation of the Zhuravliny Log kaolin. Part 1. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 8. P. 85-93. DOI: 10.6060/ivkkt.20226508.6656.
Vakhrushev N.E., MIkhalenko I.I., Podzorova L.I. The activation of anionic dye adsorption after UV irradiation of individual and binary xerogels of aluminum and zirconium oxides. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 6. P. 61-68. DOI: 10.6060/ivkkt.20236606.6744.