INFLUENCE OF THERMAL CRACKING CONDITIONS OF PLASTIC WASTE ON THE COMPOSITION AND YIELD OF PRODUCTS

  • Nikita N. Sviridenko Institute of Petroleum Chemistry of SB of the RAS
  • Ulyana A. Frolova Institute of Petroleum Chemistry of SB of the RAS
  • Khoshim Kh. Urazov Institute of Petroleum Chemistry of SB of the RAS
  • Nikita S. Sergeyev Institute of Petroleum Chemistry of SB of the RAS
Keywords: plastic, waste, gasoline, diesel fuel, gases, transformation

Abstract

In this study, the composition of the products resulting from the thermal cracking of a mixture of plastic waste was investigated. The mixture included polyethylene (low and high density), polypropylene, polystyrene, and polyethylene terephthalate. The study was conducted under specific process conditions, with temperatures ranging from 450 to 525 °C and durations ranging from 1 to 60 min. It has been ascertained that during the process of cracking (at a temperature of 450 °C and for a duration of 15 min) of the studied mixture of plastic waste, a considerable amount of fractions with boiling points above 360 °C and solid n-alkanes are formed. It has been demonstrated that increasing the duration of the process to 60 min leads to the active destruction of solid n-alkanes, with the concomitant formation of more than 24% wt. of gaseous products. Conversely, increasing the process temperature to 475 ºC allows for the reduction of the cracking duration from 60 to 5 min, thereby facilitating the active destruction of plastic waste and the formation of almost 36% of gasoline and 34% of diesel fractions by weight. The analysis of a mixture of plastic waste subjected to a temperature of 500 °C for a duration of 5 min results in the production of a liquid product that exhibits a content of light fractions analogous to that obtained at 475 °C. However, a predominance of diesel is observed in the liquid product. It has been established that during the process of plastic waste cracking at temperatures ranging from 450 to 500 ºС, destructive processes predominate. At a temperature of 525 °C, condensation reactions occur with the formation of fractions of 200-360 °C and >360 °C from gasoline. As demonstrated in the extant research, the during cracking of plastic waste produces a variety of gaseous by products, including carbon monoxide and dioxide, methane, ethane, propane, n-butane, and n-pentane. It has been established that, in order to obtain a large number of light fractions with minimal yields of by-products, the following conditions must be met: 475 °C and 5 min.

For citation:

Sviridenko N.N., Frolova U.A., Urazov Kh.Kh., Sergeyev N.S. Influence of thermal cracking conditions of plastic waste on the composition and yield of products. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2025. V. 68. N 8. P. 112-118. DOI: 10.6060/ivkkt.20256808.13t.

References

Pilapitiya P.G.C.N.T, Ratnayake A.S. The world of plastic waste: A review. Clean. Mater. 2024 V. 11. P. 100220. DOI: 10.1016/j.clema.2024.100220.

Geyer R., Jambeck J.R., Law K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017. V. 3. P. 1700782. DOI: 10.1126/sciadv.1700782.

Rafey A., Siddiqui F.Z. A review of plastic waste management in India – challenges and opportunities. Int. J. Environ. Analyt. Chem. 2023. V. 103. N 16. P. 3971-3987. DOI: 10.1080/03067319.2021.1917560.

Stubbins A., Law K.L., Muñoz S.E., Bianchi T., Zhu L. Plastics in the Earth system. Science. 2021. V. 373. P. 51-55. DOI: 10.1126/science.abb0354.

Dey S., Veerendra G.T.N., Babu P.S.S.A., Manoj A.V.P., Nagarjuna K. Degradation of Plastics Waste and Its Ef-fects on Biological Ecosystems: A Scientific Analysis and Comprehensive Review. Biomed. Mater. & Devices. 2024. V. 2. P. 70–112. DOI: 10.1007/s44174-023-00085-w.

Korai M.S., Mahar R.B., Uqaili M.A. Optimization of waste to energy routes through biochemical and thermo-chemical treatment options of municipal solid waste in Hyderabad, Pakistan. Energy Convers. Manag. 2016. V. 124. P. 333–343. DOI: 10.1016/j.enconman.2016.07.032.

Shovon S.M., Akash F.A., Rahman W., Rahman M.A., Chakraborty P., Hossain H.M.Z., Monir M.U. Strategies of managing solid waste and energy recovery for a devel-oping country – A review. Heliyon. 2024. V. 10. N 2. P. 24736. DOI: 10.1016/j.heliyon.2024.e24736.

Shah J., Jan M.R., Adnan. Metal decorated montmorillo-nite as a catalyst for the degradation of polystyrene. J. oTaiwan Inst. Chem. Eng. 2017. V. 80. P. 391–398. DOI: 10.1016/j.jtice.2017.07.026.

Sviridenko N.N., Urazov K.K., Sergeyev N.S. The effect of asphaltenes quantity on thermal and catalytic cracking product yield of heavy oil from Karmalskoye field. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 8. P. 76-84. DOI: 10.6060/ivkkt.20246708.6t.

Krivtsov E.B., Goncharov A.V., Sviridenko Y.A., Merzhigot M.I. Kinetic patterns of formation and destruction of thiophene derivatives during heat treatment of oxidation products of high-sulfur vacuum gas oil. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 11. P. 32–41. DOI: 10.6060/ivkkt.20236611.15t.

Sergeev N.S., Sviridenko N.N., Urazov Kh.Kh. Cocracking of atmospheric residue and plastic waste. J. Ana-lyt. Appl. Pyrol. 2024. V. 179. P. 106422. DOI: 10.1016/j.jaap.2024.106422.

Akin O., Varghese R.J., Eschenbacher A., Oenema J., Abbas-Abadi M.S., Stefanidis G.D., Geem K.M.V. Chemical recycling of plastic waste to monomers: Effect of catalyst contact time, acidity and pore size on olefin re-covery in ex-situ catalytic pyrolysis of polyolefin waste. J. Analyt. Appl. Pyrol. 2023. V. 172. P. 106036. DOI: 10.1016/j.jaap.2023.106036.

Choi I.-H., Lee H.-J., Rhim G.-B., Chun D.-H., Lee K.-H., Hwang K.-R. Catalytic hydrocracking of heavy wax from pyrolysis of plastic wastes using Pd/Hβ for naphtha-ranged hydrocarbon production. J. Analyt. Appl. Pyrol. 2022. V. 161. P. 105424. DOI: 10.1016/j.jaap.2021.105424.

Chen Z., Erwin B.J., Che L. Recycling waste polyethylene into fuels over Fe/USY catalyst: Evaluation on the catalytic activities of varied iron states. Fuel. 2024. V. 363. P. 131007. DOI: 10.1016/j.fuel.2024.131007.

Palos R., Gutiérrez A., Vela F.Jю, Olazar M., Arandes M J., Bilbao J. Waste Refinery: The Valorization of Waste Plastics and End-of-Life Tires in Refinery Units. A Review. Energy Fuels. 2021. V. 35. N 5. P. 3529-3557. DOI: 10.1021/acs.energyfuels.0c03918.

Kots P.A., Doika P.A., Vance B.C., Najmi S., Vlachos D.G. Tuning High-Density Polyethylene Hydrocracking through Mordenite Zeolite Crystal Engineering. ACS Sus-tain. Chem. Eng. 2023. V. 11. N 24. P. 9000-9009. DOI: 10.1021/acssuschemeng.3c01515.

Palos R., Rodríguez E., Gutiérrez A., Bilbao J., Arandes J.M. Cracking of plastic pyrolysis oil over FCC equilibri-um catalysts to produce fuels: Kinetic modeling. Fuel. 2022. V. 316. P. 123341. DOI: 10.1016/j.fuel.2022.123341.

Klimov O.V., Nadeina K.A., Potapenko O.V., Vatutina Yu.V., Saiko A.V., Koveza V.A., Mukhacheva P.P., Krestyaninova V.S., Yurtaeva A.S., Bogomolova T.S., Salomatina A.A., Gerasimov E.Yu., Prosvirin I.P., Noskov A.S. Refining of chlorine-containing plastic wastes by traditional hydrotreating and catalytic cracking processes. Fuel. 2023. V. 349. P. 128651. DOI: 10.1016/j.fuel.2023.128651.

Al-Fatesh A.S., AL-Garadi N.Y.A., Osman A.I., Al-Mubaddel F.S., Ibrahim A.A., Khan W.U., Alanazi Y.M., Alrashed M.M., Alothman O.Y. From plastic waste pyrolysis to Fuel: Impact of process parameters and material selection on hydrogen production. Fuel. 2023. V. 344. P. 128107. DOI: 10.1016/j.fuel.2023.128107.

Kasar P., Ahmaruzzaman M. Characterization of liquid products obtained from catalytic binary cocracking of residual fuel oil with various waste plastics. Sci. Rep. 2022. V. 12. P. 10987. DOI: 10.1038/s41598-022-15371-8.

Cai W., Wang X., Zhu Z., Kumar R., Amaniampong P.N., Zhao J., Hu Z.-T. Synergetic effects in the copyrolysis of lignocellulosic biomass and plastic waste for renewable fuels and chemicals. Fuel. 2023. V. 353. P. 129210. DOI: 10.1016/j.fuel.2023.129210.

Chen G., Cao X., Che Y., Zeng D., Li J., Li S., Zhao J., Yan B. Synergistic effect on low-pressure pyrolysis of bi-omass-plastic mixture as representative of Tibetan tourism solid waste. J. Analyt. Appl. Pyrol. 2023. V. 175. P. 106181. DOI: 10.1016/j.jaap.2023.106181.

Tejaswini M.S.S.R., Pathak P. Co-combustion of multi-layered plastic waste blend with biomass: Thermokinetics and synergistic effect. Fuel. 2023. V. 337. P. 127168. DOI: 10.1016/j.fuel.2022.127168.

Khan M.Z.H., Sultana M., Al-Mamun M.R., Hasan M.R. Pyrolytic waste plastic oil and its diesel blend: fuel charac-terization. J. Environ. Public Health. 2016. V. 8. P. 1-6. DOI: 10.1155/2016/7869080.

Hussein Z.A., Shakor Z.M., Alzuhairi M., Al-Sheikh F. Thermal and catalytic cracking of plastic waste: a review. Internat. J. Environ. Analyt. Chem. 2023. V. 103. N 17. P. 5920-5937. DOI: 10.1080/03067319.2021.1946527.

Sahu R., Song B. J., Im J. S., Jeon Y., Lee C.W. A review of recent advances in catalytic hydrocracking of heavy residues. J. Ind. Eng. Chem. 2015. V. 27. P. 12−24. DOI: 10.1016/j.jiec.2015.01.011.

Munir D., Irfan M.F., Usman M.R. Hydrocracking of Virgin and Waste Plastics: A Detailed Review. Renew. Sus-tain. Energy Rev. 2018. V. 90. P. 490−515. DOI: 10.1016/j.jiec.2015.01.011.

Vela F.J., Palos R., Bilbao J., Arandes J.M., Gutiérrez A. Effect of Co-Feeding HDPE on the Product Distribution in the Hydrocracking of VGO. Catal. Today. 2020. V. 353. P. 197−203. DOI: 10.1016/j.cattod.2019.07.010.

Lingaiah N., Uddin M.A, Muto A., Imai T., Sakata Y. Removal of organic chlorine compounds by catalytic de-hydrochlorination for the refinement of municipal waste plastic derived oil. Fuel. 2001. V. 80. P. 1901-1905. DOI: 10.1016/S0016-2361(01)00046-1.

Pan J., Jiang H., Qing T., Zhang J., Tian K. Transfor-mation and kinetics of chlorine-containing products during pyrolysis of plastic wastes. Chemosphere. 2021. V. 284. P. 131348. DOI: 10.1016/j.chemosphere.2021.131348.

Lopez-Urionabarrenechea A., de Marco I., Caballero B.M., Laresgoiti M.F., Adrados A. Upgrading of chlorin-ated oils coming from pyrolysis of plastic waste. Fuel Proc. Technol. 2015. V. 137. P. 229-239. DOI: 10.1016/j.fuproc.2015.04.015.

He W., Sun Y., Shan X. Organic matter evolution in pyrolysis experiments of oil shale under high pressure: Guidance for in situ conversion of oil shale in the Songliao Basin. J. Analyt. Appl. Pyrol. 2021. V. 155. P. 105091. DOI: 10.1016/j.jaap.2021.105091.

Published
2025-06-01
How to Cite
Sviridenko, N. N., Frolova, U. A., Urazov, K. K., & Sergeyev, N. S. (2025). INFLUENCE OF THERMAL CRACKING CONDITIONS OF PLASTIC WASTE ON THE COMPOSITION AND YIELD OF PRODUCTS. ChemChemTech, 68(8), 112-118. https://doi.org/10.6060/ivkkt.20256808.13t
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)