HEAT OF HYDRATION OF DIETHYLSULFONE BY QUANTUM CHEMICAL CALCULATION
Abstract
The quantum chemical study of the hydration of diethyl sulfone was performed by using Gaussian 09 software package. The conformational analysis of the isolated molecule of diethyl sulfone is performed by the restricted Hartree-Fock (RHF) and the density functional theory (DFT/B3PW91) methods with 6-311++G(d,p) extended basis set. The analysis of the potential energy surface revealed the existence of four stable conformers of diethyl sulfone with different degrees of degeneracy. The nature of stationary points on the potential energy surface is verified by the complete gas phase optimization and the vibrational analysis. The global minimum is the conformer with two (CCSC) dihedral angles equal 180°. The fractional population distribution of different conformers is determined by Boltzmann distribution. The average energy of the diethyl sulfone molecule in vacuum is calculated. To account the effect of solvent the self-consistent reaction field (SCRF) method, particularly, solvent model based on electron density (SMD), was employed. It is shown, that solvent affects on the relative population of conformers. The thermodynamic parameters, in particular enthalpy, for the conformers of diethyl sulfone are determined both in the gas phase and in the aqueous solution. The average energy of diethyl sulfone in water is calculated. It is shown, that although the dissolution of crystalline diethyl sulfone in water is an endothermic process, the hydration of diethyl sulfone molecules occurs with the release of heat. The heat of dissolution of diethyl sulfone calculated by the density functional theory is consistent with the experimental data.
References
Clark T., Murray J.S., Lane P., Politzer P. Why are dimethyl sulfoxide and dimethyl sulfone such good solvents? J. Mol. Model. 2008. V. 14. P. 689–697. DOI: 10.1007/s00894-008-0279-y.
Vandermeeren L., Leyssens T., Peeters D. Theoretical study of the properties of sulfone and sulfoxide functional groups. J. Mol. Struct. THEOCHEM. 2007. V. 804. P. 1–8. DOI: 10.1016/j.theochem.2006.10.006.
Jacob S.W., Lawrence R.M., Zucker M. The miracle of MSM, the natural solution for pain. New York: G.P. Put-man's Sons. 1999. P. 57-58.
Rose S.E., Chalk J.B., Galloway G.J., Doddrell D.M. Detection of dimethyl sulfone in the human brain by in vivo proton magnetic resonance spectroscopy. Magn. Reson. Imaging. 2000. V. 18. P. 95-98. DOI: 10.1016/S0730-725X(99)00110-1.
Markarian S.A., Bonora S., Bagramyan K.A., Arakelyan V.B. Glass-forming property of the system di-ethyl sulphoxide/water and its cryoprotective action on Escherichia coli survival. Cryobiology. 2004. V. 49. P. 1-9. DOI: 10.1016/j.cryobiol.2004.04.001.
Bonora S., Markarian S.A., Trinchero A., Grigorian K.R. DSC study on the effect of dimethysulfoxide (DMSO) and diethylsulfoxide (DESO) on phospholipid liposomes. Thermochim. Acta. 2005. V. 433. P. 19-26. DOI: 10.1016/j.tca.2005.02.011.
Abouimrane A., Belharouak I., Amine K. Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochem. Commun. 2009. V. 11. P. 1073–1076. DOI: 10.1016/j.elecom.2009.03.020.
Wang Y., Xing L., Li W., Bedrov D. Why do sulfone-based electrolytes show stability at high voltages? Insight from density functional theory. J. Phys. Chem. Lett. 2013. V. 4. P. 3992−3999. DOI: 10.1021/jz401726p.
Senent M.L., Dalbouha S., Cuisset A., Sadovskii D. Theoretical spectroscopic characterization at low temperatures of dimethyl sulfoxide: The role of anharmonicity. J. Phys. Chem. A. 2015. V. 119 N 37. P. 9644-9652. DOI: 10.1021/acs.jpca.5b06941.
Chaban V. Force field development and simulations of senior dialkyl sulfoxides. Phys. Chem. Chem. Phys. 2016. V. 18. P. 10507-10515. DOI: 10.1039/c5cp08006a.
Kirillov S.A., Gorobets M.I., Gafurov M.M., Ataev M.B., Rabadanov K.Sh. Self-association and picosecond dynamics in liquid dimethyl sulfoxide. J. Phys. Chem. B. 2013. V. 117. P. 9439-9448. DOI: 10.1021/jp403858c.
Wallace V.M., Dhumal N.R., Zehentbauer F.M., Kim H.J., Kiefer J. Revisiting the аqueous solutions of dimethyl sulfoxide by spectroscopy in the mid- and near-infrared: Experiments and Car–Parrinello simulations. J. Phys. Chem. B. 2015. V. 119. P. 14780–14789. DOI: 10.1021/acs.jpcb.5b09196.
Gabrielyan L.S., Markarian S.A. Dielectric relaxation spectroscopy study of the structure and dynamics of dialkyl sulfoxide solutions. Russ. J. Phys. Chem. A. 2018. V. 92. N 2. P. 205-213. DOI: 10.1134/S0036024418020073.
Gabrielyan L.S., Markarian S.A., Weingärtner H. Die-lectric spectroscopy of dimethylsulfone solutions in water and dimethylsulfoxide. J. Mol. Liq. 2014. V. 194. P. 37–40. DOI: 10.1016/j.molliq.2014.01.013.
Markaryan S.A., Aznauryan M.G., Kazoyan E.A. Physi-cochemical properties of aqueous solutions of dimethyl- and diethylsulfones. Zhurn.Fizich. Khim. 2011. V. 85. N 12.
P. 2138–2141. DOI: 10.1134/S0036024411120211 (in Russian).
Ghazoyan H.H., Markarian S.A. Densities and thermo-chemical properties of dimethylsulfone in dimethylsulfoxide and dimethylsulfoxide/water. J. Mol. Liq. 2013. V. 183. P. 85-88. DOI: 10.1016/j.molliq.2013.04.010.
Kazoyan E.A., Markaryan Sh.A. Volumetric properties of solutions of dimethylsulfone in ethanol-water mixture at temperatures range of 298,15-323,15 K. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 7. P. 27-33. DOI: 10.6060/tcct.2017607.5564 (in Russian).
Givan A., Grothe H., Loewenschuss A., Nielsen C. Infra-red spectra and ab initio calculations of matrix isolated di-methyl sulfone and its water complex. Phys. Chem. Chem. Phys. 2002. V. 4. P. 255-263. DOI: 10.1039/b107801c.
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT. 2013.
Marenich A.V., Cramer C.J., Truhlar D.G. Universal solvation model based on solute electron density and a con-tinuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009. V. 113. P. 6378-6396. DOI: 10.1021/jp810292n.
Chickos J.S., Acree W.E., Jr. Enthalpies of vaporization of organic and organometallic compounds, 1880–2002. J. Phys. Chem. Ref. Data. 2003. V. 32. P. 519-878. DOI: 10.1063/1.1529214.