HYDROGEN SULFIDE AND ALKANTHIOLS IN NUCLEOPHILIC SUBSTITUTION REACTIONS OF HYDROXY GROUPS IN ALIPHATIC ALCOHOLS

  • Aleksandra V. Okhlobystina Astrakhan State Technical University
  • Andrey O. Okhlobystin Astrakhan State Technical University
  • Nadezhda T. Berberova Astrakhan State Technical University
  • Daria A. Burmistrova Astrakhan State Technical University
Keywords: hydrogen sulfide, alkanthiols, nucleophilic substitution, electrochemical synthesis, ionic liquids, aliphatic alcohols synthesis

Abstract

Hydrogen sulfide and alkanethiols are toxic compounds containing in the production of wells in many oil and gas condensate fields. Because the policy of hydrocarbon processing enterprises aimed at the development of new fundamental research, processes and technologies in order to find rational use of raw materials, the conversion of hydrogen sulfide and alkanethiols into valuable compounds is one of the strategic goals of the oil and gas industry. The methods of "green" chemistry are perspective processes for converting hydrogen sulfide and alkantiols into valuable organic compounds, which allow working in environmentally friendly conditions with minimal energy and resource costs. The reactions of direct nucleophilic substitution of butanol-2, pentanol-1 and hexanol-1 to HS- and RS- group by single-electron reduction of hydrogen sulfide and alkanthiol in acetonitrile and ionic liquid at room temperature and atmospheric pressure with a single by-product - H2O were described. The possibility of conducting an experiment without electrolyte due to the intrinsic electrical conductivity of the ionic liquid allows not only lowering the consumption of reagents, but also facilitating the isolation of the target product. Due to the structuring and the matrix effect in ionic liquids, the duration of electrolysis in the reactions under consideration is 2-3 times less than in the case of aprotic solvents.

References

Melnikov N.N. Pesticides. Chemistry, technology, application. М.: Book on Demand. 2013. 697 p. (in Russian).

Zhao Y., Wang H., Xian M. Cysteine-Activated Hydrogen Sulfide (H2S) Donors. J. Am. Chem. Soc. 2011. V. 133. P. 15-17. DOI: 10.1021/ja1085723.

Devarie-Baez N.O., Bagdon P.E., Peng B., Zhao Y., Park C.M., Xian M. Light-Induced Hydrogen Sulfide Release from “Caged” gem-Dithiols. Org. Lett. 2013. V. 15. P. 2786-2789. DOI: 10.1021/ol401118k.

Fukushima N., Ieda N., Sasakura K., Nagano T., Hanaoka K., Suzuki T., Miyata N., Nakagawa H. Photo-controllable Hydrogen Sulfide Donor using Ketoprofenate Photocages. Chem. Commun. 2014. V. 50. P. 587-589. DOI: 10.1039/C3CC47421F.

Zhou Z., von Wantoch Rekowski M., Coletta C., Szabo C., Bucci M., Cirino G., Topouziz S., Papapetropoulos A., Giannis A. Thio-glycine and L-thiovaline: Biologically active H2S-donors. Bioorg. Med. Chem. 2012. V. 20. P. 2675-2678. DOI: 10.1016/j.bmc.2012.02.028.

Klein E., Likes V., Cibulkova Z. On the energetics of phenol antioxidants activity. Petroleum and Coal. 2005. V. 47 (1). P. 33-39.

Pizzi A., Mittal K.L. Handbook of Adhesive Technology. NY: Marcel Dekker. 2003. P. 541-571.

Zenkov N.K., Kandalinceva N.V., Lankin V.Z., Menschikova E.B., Prosenko A.E. Phenolic bioantioxidants. Novosibirsk: SBMS. 2003. 328 p. (in Russian).

Bellú S., Hure E.M., Trapé M., Trossero C., Molina G., Drogo C., William P.A.M., Atria A.M., Muñoz Acevero J.C., Zacchino S., Sortino M., Campagnoli D., Rizzotto M. Synthesis, structure and antifungal properties of Co(II)–sulfathiazolate complexes. Polyhedron. 2005. V. 24. P. 501 – 509. DOI: 10.1016/j.poly.2004.12.017.

Berberova N.T., Shinkar E.V., Girenko E.E. Alkenes functionalization with hydrogen sulfide in presence different oxidants. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2004. V. 47. N 8. P. 10 – 13 (in Russian).

Lund H., Hammerich O. Organic electrochemistry. Four Edition, Revised and Expanded. New York: Marcel Dekker, Inc. 2001. P. 1396.

Metwally M.A., Abdel-Wahab B.F. Utility of cyclohexanethiols in organic synthesis. Org. Commun. 2009. V. 2. N 4. P. 84-119.

Alejandro Baeza, Carmen Najera. Recent advances in the direct nucleophilic substitution of allylic alcohols through SN1-type reactions. Synthesis. 2014. 46 (01). P. 0025-0034. DOI: 10.1055/s-0033-1340316.

Pankratov A.N. Selected chapters of the electrochemistry of organic compounds. Ionic liquids. Saratov: Izd. Sara-tov. Gos. Univer. 2011. 150 p. (in Russian).

Kuzmin V.V., Smolyaninov I.V., Berberova N.T. Redox-activation of hydrogen sulfide and sulfur in reactions with halogenated cycloalkanes. Coll. of presentations VIII All-Russia scien. conf. «Actual methods in theoretic and experimental electrochemistry». Ples. 2016. 37 p. (in Russian).

Berberova N.T., Shinkar E.V., Smolyaninov I.V., Okhlobystin A.O. The involvement of hydrogen sulfide, thiols and polysulfones in the synthesis of organic sulfur compounds: monograph. Rostovon-Don: SSC-RAS. 2009. 256 p. (in Russian).

Korolkov D.V. Small molecule activation by cluster complexes. Soros. Obrazovat. Zhurn. 2000. V. 6. N 1. P. 49-55 (in Russian).

Shinkar E.V., Okhlobystina A.V., Koldaeva Y.Y., Vasileva E.A., Petrova N.V., Smolyaninov I.V., Berberova N.T. “Green chemistry” methods in utilization of sulfur compounds from hydrocarbon stock. Zasch. Okr. Sredy Neftegaz. Komplekse. 2011. N 10. P. 67-71 (in Russian).

Aoife M. O'Mahony, Richard G. Compton. The Mediated Detection of Hydrogen Sulfide in Room Temperature Ionic Liquids. Electroanalysis. 2010. V. 20. P. 2313-2322. DOI: 10.1002/elan.201000283.

Okhlobystina A.V, Okhlobystin A.O., Koldaeva Y.Y., Movchan N.O., Litvin А.А., Berberova N.T. Ionic liquids for extraction and synthesis organic sulfur compounds. Zhurn. Obshch. Khim. 2013. V. 83 (11). P. 1868-1873 (in Russian).

Published
2019-08-19
How to Cite
Okhlobystina, A. V., Okhlobystin, A. O., Berberova, N. T., & Burmistrova, D. A. (2019). HYDROGEN SULFIDE AND ALKANTHIOLS IN NUCLEOPHILIC SUBSTITUTION REACTIONS OF HYDROXY GROUPS IN ALIPHATIC ALCOHOLS. ChemChemTech, 62(8), 61-65. https://doi.org/10.6060/ivkkt.20196208.5889
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)

Most read articles by the same author(s)