INFLUENCE OF MANGANESE ON FORMATION OF ACTIVE PHASE OF COBALT CATALYST OF HYDROCARBON SYNTHESIS
Abstract
The active phase and catalytic properties of cobalt catalysts of Fischer-Tropsch synthesis promoted with manganese and prepared by impregnation were studied. KSKG silica gel having a monodisperse structure with an average pore diameter of 12–16 nm was used as a support. The cobalt content in the obtained samples was 20.8-21.8 wt.%, manganese content was 0.5–2 wt.%. The structural characteristics of the catalysts were investigated by X-ray diffraction, transmission electron microscopy, temperature-programmed reduction and temperature-programmed hydrogen desorption. The catalytic activity and selectivity of the samples in the process of hydrocarbon synthesis were researched in the flow mode at a pressure of 0.1 MPa, at a Gas Hourly Space Velocity (GHSV) of 100 h–1, at the temperatures of 150–220 °C and a ratio of CO to hydrogen in synthesis gas of 2:1. Preliminary reduction of catalysts was carried out with hydrogen at a temperature of 400 °C. In the composition of the studied samples with manganese the formation of solid solutions of metals such as xCo3O4–(1–x)Mn3O4 was confirmed. It is shown that the reduction process of Co3O4 is determined by the composition and structure of solid solutions of components that are hard-to-recover compounds. The features of the promoting action of manganese depending on the concentration are determined. The introduction of 0.5–2 wt.% manganese allows to regulate the composition and microstructure of cobalt oxide compounds, the properties of metallic Co, increases the catalytic characteristics: activity, selectivity for C5+ and reduces the yield of methane. It is shown how, depending on the content of the metal additive, the manifestations of the structural (at a concentration of 0–1 wt.%) or electronic (at a concentration of 2 wt.%) promoting action of manganese increase. The optimum concentration of manganese is
1 wt.%. The catalyst is characterized by the minimum average size of crystallites, the highest value of the specific surface of cobalt metal and the maximum catalytic indicators.
References
Lapidus A.L., Golubeva I.A., Krylov I.F., Zhagfarov F.G. Production of alternative motor fuels based on natural gas. Chem. Tech. Fuels Oils. 2009. V. 45. N 5. P. 305-312. DOI: 10.1007/s10553-009-0152-4.
Eliseev O.L., Savost’yanov A.P., Sulima S.I., Lapidus A.L. Recent development in heavy paraffin synthesis from CO and H2. Mendeleev Commun. 2018. V. 28. N 4. P. 345-351. DOI: 10.1016/j.mencom.2018.07.001.
Khodakov A.Y., Chu W., Fongarland P. Advances in the development of novel cobalt Fischer−Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 2007. V. 107. N 5. P. 1692-1744. DOI: 10.1021/cr050972v.
Tian H., Li X., Zeng L., Gong J. Recent advances on the design of group VIII base-metal catalysts with encapsulated structures. ACS Catal. 2015. V. 5. N 8. P. 4959-4977. DOI: 10.1021/acscatal.5b01221.
Rytter E., Tsakoumis N.E., Holmen A. On the selectivity to higher hydrocarbons in Co-based Fischer–Tropsch synthesis. Catal. Today. 2016. V. 261. P. 3-16. DOI: 10.1016/j.cattod.2015.09.020.
Eliseev O.L., Tsapkina M.V., Dement’eva O.S., Davydov P.E., Kazakov A.V., Lapidus A.L. Promotion of cobalt catalysts for the Fischer–Tropsch synthesis with alkali metals. Kinet. Catal. 2013. V. 54. N 2. P. 207-212. DOI: 10.1134/S0023158413020055.
Pedersen E.Ø., Svenum I.-H., Blekkan E.A. Mn promoted Co catalysts for Fischer-Tropsch production of light olefins – An experimental and theoretical study. J. Catal. 2018. V. 361. P. 23-32. DOI: 10.1016/j.jcat.2018.02.011.
Zheng J., Cai J., Jiang F., Xu Y., Liu X. Investigation of the highly tunable selectivity to linear α-olefins in Fischer–Tropsch synthesis over silica-supported Co and CoMn catalysts by carburization–reduction pretreatment. Catal. Sci. Technol. 2017.
V. 7. N 20. P. 4736-4755. DOI: 10.1039/C7CY01764B.
Morales F., Grandjean D., Mens A., de Groot F.M.F., Weckhuysen B.M. X-ray Absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: relationships between preparation method, molecular structure, and catalyst performance. J. Phys. Chem. B. 2006. V. 110. N 17. P. 8626-8639. DOI: 10.1021/jp0565958.
Salazar-Contreras H.G., Martínez-Hernández A., Boix A.A., Fuentes G.A., Torres-García E. Effect of Mn on Co/HMS-Mn and Co/SiO2-Mn catalysts for the Fischer-Tropsch reaction. Appl. Catal. B: Environmental. 2019.
V. 244. P. 414-426. DOI: 10.1016/j.apcatb.2018.11.067.
Iqbal S., Davies T.E., Morgan D.J., Karim K., Hayward J.S., Bartley J.K., Taylor S.H., Hutchings G.J. Fischer Tropsch synthesis using cobalt based carbon catalyst. Catal. Today. 2015. V. 275. P. 35-39. DOI: 10.1016/j.cattod.2015.09.041.
Morales F., Weckhuysen B.M. Promotion Effects in Co-based Fischer–Tropsch Catalysis. Catalysis (R. Soc. Chem.). 2006. V. 19. P. 1-40. DOI: 10.1039/9781847555229-00001.
Savost'yanov A.P., Yakovenko R.E., Sulima S.I., Bakun V.G., Narochnyi G.B., Chernyshev V.M., Mitchenko S.A. The impact of Al2O3 promoter on an efficiency of C5+ hydrocarbons formation over Co/SiO2 catalysts via Fischer-Tropsch synthesis. Catal. Today. 2017. V. 279. P. 107-114. DOI: 10.1016/j.cattod.2016.02.037.
Savost'yanov A.P., Yakovenko R.E., Narochniy G.B., Sulima S.I., Bakun V.G., Soromotin V.N., Mitchenko S.A. Unexpected increase in C5+ selectivity at temperature rise in high pressure Fischer-Tropsch synthesis over Co-Al2O3/SiO2 catalyst. Catal. Commun. 2017. V. 99. P. 25-29. DOI: 10.1016/ j.catcom. 2017. 05.021.
Santos M.E.dos, Castro A., Martinez I., Lisboa-Filho P.N., Peña O. Mechanosynthesis of the multiferroic cubic spinel Co2MnO4: In-fluence of the calcination temperature. Ceram. Int. 2014. V. 40. N. 5. P. 7185-7193. DOI: 10.1016/j.ceramint.2013.12.057.
Ríos E., Lara P., Serafini D., Restovic A., Gautier J.L. Synthesis and characterization of manganese-cobalt solid solutions prepared at low temperature. J. Chil. Chem. Soc. 2010. V. 55. N 2. P. 261-265. DOI: 10.4067/S0717-97072010000200026.
Jacobs G., Ji Y., Davis B.H., Cronauer D., Kropf A.J., Marshall C.L. Fischer–Tropsch synthesis: Temperature programmed EX-AFS/XANES investigation of the influence of support type, cobalt loading, and noble metal promoter addition to the reduction behavior of cobalt oxide particles. Appl. Catal. A: General. 2007. V. 333. N 2. P. 177-191. DOI: 10.1016/j.apcata.2007.07.027.
Sulima S.I., Bakun V.G., Yakovenko R.E., Shabel’skaya N.P., Saliev A.N., Narochnyi G.B., Savost’yanov A.P. The microstructure of cobalt silica gel catalyst in the presence of Al2O3 additive. Kinet. Catal. 2018. V. 59. N 2. P. 218-228. DOI: 10.1134/S0023158418020131.
Jacobs G., Ma W., Davis B.H., Cronauer D.C., Kropf J.A., Mar-shall C.L. Fischer–Tropsch synthesis: TPR-XAFS analysis of Co/Silica and Co/Alumina catalysts comparing a novel NO calcination method with conventional air calcination. Catal. Lett. 2010. V. 140. N 3-4. P. 106-115. DOI: 10.1007/s10562-010-0453-6.
Morales F., de Smit E., de Groot F., Visser T., Weckhuysen B. Effects of manganese oxide promoter on the CO and H2 adsorption properties of titania-supported cobalt Fischer–Tropsch catalysts. Catal. 2007. V. 246. N 1. P. 91-99. DOI: 10.1016/j.jcat.2006.11.014.
Fratalocchi L., Visconti C.G., Lietti L., Fischer N., Claeys M. A promising preparation method for highly active cobalt based Fischer-Tropsch catalysts supported on stabilized Al2O3. Appl. Catal. A: Gen-eral. 2018. V. 556. P. 92-103. DOI: 10.1016/j.apcata.2018.02.002.