REGULATION OF PROPERTIES OF A BIFUNCTIONAL COBALT CATALYST FOR FISCHER-TROPSCH SYNTHESIS USING HIERARCHICAL HBETA ZEOLITE
Abstract
In this work, new bifunctional cobalt catalysts for Fischer-Tropsch synthesis were synthesized in the form of a composite mixture: a metal component - the Co-Al2O3/SiO2 catalyst, an acid component - HBeta zeolite and a boehmite binder - AlO(OH). In HBeta zeolite (with SiO2/Al2O3 molar ratios of 40.5) in protic form, the porous structure has been optimized with an alkaline treatment (molar NaOH concentration: 0.1, 0.15, 0.25, 0.3 and 0.5) to ensure the production of branched paraffins and olefins in fuel hydrocarbons. The catalysts are characterized by X-ray diffraction (XRD), low-temperature N2 adsorption-desorption and temperature-programmed hydrogen reduction (TPR H2), zeolite-energy dispersive surface microanalysis (EDM), thermogravimetry (TGA), scanning microscopy (SEM) and adsorption-desorption of N2. The effectiveness of treatment with NaOH solution to increase the mesoporosity of the HBeta structure was assessed. Research on Fischer-Tropsch synthesis was carried out with a stationary catalyst bed at a pressure of 2 MPa, a temperature of 240 – 250 °C and a gas velocity of 1000 h-1. Balance experiments were carried out for 70–80 h, analyzing the composition and amount of gas at the outlet. It has been shown that increasing the synthesis temperature from 240 to 250 °C intensifies the synthesis process - the degree of conversion of CO catalysts increases by 9-12%. The composition of the Fischer-Tropsch synthesis products was analyzed. It has been established that selectivity of the formation of hydrocarbons in fuel fractions, with a high degree of isomerization and catalyst productivity, determines with the use of HBeta, a modified by NaOH solution with a concentration of 0.25 and 0.5 M.
For citation:
Papeta O.P., Bakun V.G., Zubkov I.N., Saliev A.N., Savost’yanov A.P., Yakovenko R.E. Regulation of properties of a bifunctional cobalt catalyst for Fischer-Tropsch synthesis using hierarchical HBeta zeolite. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 9. P. 62-75. DOI: 10.6060/ivkkt.20246709.7049.
References
Adeleke A.A., Liu X., Lu X., Moyo M., Hildebrandt D. // Rev. Chem. Eng. 2020. V. 36. N 4. P. 437-457. DOI: 10.1515/ revce-2018-0012.
Sartipi S.J., Parashar K., Valero-Romero M., Santos V., Linden B., Makkee M., Kapteijn F., Gascon J. // J. Catal. 2013. V. 305. Р. 179-190. DOI: 10.1016/j.jcat.2013.05.012.
Asalieva E.Y., Sineva L.V., Mordkovich V.Z. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 10. P 44-51 (in Russian). DOI: 10.6060/ivkkt.20236610.12y.
Arutyunov V.S., Savchenko V.I., Sedov I.V., Nikitin A.V., Troshin K.Y., Borisov A.A., Fokin I.G., Makar-yan I.A., Strekova L.N. // Eur. Chem.-Technol. J. 2017. V. 19. N 3. Р. 265-271. DOI: 10.18321/ectj662.
Bonetto L., Pierella L.B., Saux C. // Bull. Mater. Sci. 2020. V. 43. N 1. P. 288. DOI: 10.1007/s12034-020-02254-9.
Fernandez S., Ostraat M.L., Zhang K. // AIChE J. 2020. V. 66. N 9. P. e16943. DOI: 10.1002/aic.16943.
Xing C., Yang G., Lu P., Shen W., Gai X., Tan L., Wang T., Yang R., Tsubaki N. // Micropor. Mesopor. Mater. 2016. V. 233. Р. 62-69. DOI: 10.1016/j.micromeso.2015.10.021.
Schwanke A.J., Pergher S., Martínez L.M.T., Kharissova O.V., Kharisov B.I. Hierarchical MWW zeo-lites by soft and hard template routes. Handbook of Eco-materials. Switzerland: Springer Nature. 2019. 2537-59. DOI: 10.1007/978-3-319-48281-1_89-1.
Sineva L.V., Asalieva E.Y., Mordkovich V.Z. // Russ. Chem. Rev. 2015.V. 84. N 11. P. 1176. DOI: 10.1070/ RCR4464.
Savost’yanov A.P., Narochnyi G.B., Yakovenko R.E., Saliev A.N., Sulima S.I., Zubkov I.N., Nekroenko, S.V., Mitchenko S.A. // Petrol. Сhem. 2017. V. 57. P. 1186-1189 (in Russian). DOI: 10.1134/S0965544117060251.
Yakovenko R.E., Zubkov I.N., Bakun V.G., Agliullin M.R., Saliev A.N., Savost’yanov A.P. // Catal. Ind. 2021. V. 13. Р. 230-238. DOI: 10.1134/S2070050421030120.
Yakovenko R.E., Savost'yanov A.P., Narochniy G.B., Soromotin V.N., Zubkov I.N., Papeta O.P., Svetogorov R.D., Mitchenko S.A. // Catal. Sci. Technol. 2020. V. 10. N 22. Р. 7613-7629. DOI: 10.1039/D0CY00975J.
Sulima S.I., Bakun V.G., Yakovenko R.E., Shabel’skaya N.P., Saliev A.N., Narochnyi G.B., Sa-vost’yanov A.P. // Kinet. Catal. 2018. V. 59. Р. 218-228. DOI: 10.1134/S002 3158418020131.
Abello S., Bonilla A., Perez-Ramirez J. // Appl. Catal. A: Gen. 2009. V. 364. Р. 191-198.
Min J., Kim S., Kwak G., Kim Y.T., Han S.J., Lee Y., Jun K.W., Kim S.K. // Catal. Sci. Technol. 2018. V. 8. N 24. Р. 6346-6359. DOI: 10.1039/C8CY01931B.
Tarach K., Góra-Marek K., Tekla J., Brylewska К., Datka J, Mlekodaj K., Makowski W., Igualada López M.C., Triguero J.M., Rey F. // J. Catal. 2014. V. 312. Р. 46-57. DOI: 10.1016/j.jcat.2014.01.009.
Li H., Hou B., Wang J., Qin C., Zhong M., Huang X., Jia L., Li D. // Molec. Catal. 2018. V. 459. Р. 106-112. DOI: 10.1016/j.mcat.2018.08.002.
Sadek R., Chalupka K.A., Mierczynski P., Rynkowski J., Millot Y., Valentin L., Casale S., Dzwigaj S. // Catal. Today. 2020. V. 354. Р. 109-122. DOI: 10.1016/j.cattod.2 019.05.004.
Beheshti M.S., Ahmadpour J., Behzad M., Arabi H. // Brazilian J. Chem. Eng. 2021. V. 38. P. 101-121. DOI: 10.1007/s43153-020-00075-1.
Fernandez S., Ostraat M. L., Zhang K. // AIChE J. 2020. V. 66. N 9. P. e16943. DOI: 10.1002/aic.16943.
Liu Q., Fan W. // Chem. J. Chinese Univ. 2021. V. 42. N 1. P. 60-73.
Jin Y., Zhang L., Liu J., Zhang S., Sun S., Asaoka S., Fujimoto K. // Micropor. Mesopor. Mater. 2017. V. 248. Р. 7-17. DOI: 10.1016/j.micromeso.2017.04.013.
Verboekend D., Keller T.C., Milina M., Hauert R., Pérez-Ramírez J. // Chem. Mater. 2013. V. 25. N 9. Р. 1947-1959. DOI: 10.1021/cm4006103.
Verboekend D., Pérez-Ramírez J. // Catal. Sci. Technol. 2011. V. 1. N 6. P. 879-890. DOI: 10.1039/C1CY00150G.
Sun H., Wang A., Sun K., Jiang J., Wang F., Gu Z. // J. Porous Mater. 2019. V. 26. Р. 961-970. DOI: 10.1007/ s10934-018-0693-1.
Zhang K., Fernandez S., Converse E.S., Kobaslija S. // Catal. Sci. Technol. 2020. V. 10. N 14. Р. 4602-4611. DOI: 10.1039/D0CY01209B.
Link F., Ahad N., de Klerk A. // Am. Chem. Soc. 2021. Р. 311-352. DOI: 10.1021/bk-2021-1379.ch012.
Chalupka K.A., Sadek R., Szkudlarek L., Mierczynski P., Maniukiewicz W., Rynkowski J., Gurgul J., Casale S., Brouri D., Dzwigaj S. // Res. Chem. Intermed. 2021. V. 47. P. 397-418. DOI: 10.1007/s11164-020-04343-0.
Doluda V.Yu., Sulman M.G., Matveeva V.G., Lakina N.V., Sulman E.M. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2016. V. 59. N 2. P. 79-82 (in Russian). DOI: 10.6060/tcct.20165902.5268.
Stepanov A.A., Korobitsyna L.L., Budaev Zh.B., Vosmerikov A.V., Gerasimov E.Yu., Ishkildina A.Kh. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 11. P. 58-66 (in Russian). DOI: 10.6060/ivkkt.20236611.7t.
Verboekend D., Vilé G., Pérez-Ramírez J. // Cryst. Growth Des. 2012. V. 12. N 6. P. 3123-3132. DOI: 10.1021/ cg3003228.
Guo X., Guo L., Zeng Y., Kosol R., Gao X., Yoneyama Y., Yang G., Tsubaki N. // Catal. Today. 2021. V. 368. P. 196-203. DOI: 10.1016/j.cattod.2020.04.047.
de Oliveira A.A., da Silva V., de Aguiar Pontes D., Almeida D.F., Silva D.S.A., Ferreira J.M., Santos R.S., Urquieta-Gonzalez E.A., Pontes L.A.M. // React. Kinet. Mech. Catal. 2021. V. 132. P. 401-416. DOI: 10.1007/ s11144-020-01921-6.
Monama W., Mohiuddin E., Thangaraj B., Mdleleni M.M., Key D. // Catal. Today. 2020. V. 342. Р. 167-177. DOI: 10.1016/j.cattod.2019.02.061.
Wijaya Y.P., Kristianto I., Lee H., Jae J. // Fuel. 2016. V. 182. Р. 588-596. DOI: 10.1016/j.fuel.2016.06.010.
Wang Y., Sun Y., Lancelot C., Lamonier C., Morin J.C., Revel B., Rives A. // Micropor. Mesopor. Mater. 2015. V. 206. Р. 42-51. DOI: 10.1016/j.micromeso.2014.12.017.
De la Osa, A.R., Romero A., Díez-Ramírez J., Valverde J.L., Sánchez P. // Top. Catal. 2017. V. 60. P. 1082-1093. DOI: 10.1007/s11244-017-0792-2.
Groen J.C., Abelló S., Villaescusa L.A., Pérez-Ramírez J. // Micropor. Mesopor. Mater. 2008. V. 114. N 1-3. P. 93-102. DOI: 10.1016/j.micromeso.2007.12.025.
Savostyanov A.P., Yakovenko R.E., Narochny G.B., Nepomnyashchikh E.V., Mitchenko S.A. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 8. P. 139-146 (in Russian). DOI: 10.6060/ivkkt.20196208.5905.
Savost’yanov A.P., Yakovenko R.E., Narochnyi G.B., Bakun V.G., Sulima S.I., Yakuba E.S., Mitchenko S.A. // Kinet. Catal. 2017. V. 58. P. 81-91. DOI: 10.1134/S0023 158417010062.
Savost’yanov A.P., Yakovenko R.E., Narochnyi G.B., Zubkov I.N., Sulima S.I., Soromotin V.N., Mitchenko S.A. // Petrol. Chem. 2020. V. 60. Р. 81-91. DOI: 10.1134/ S0023158418020131.
Narochny G.B., Yakovenko R.E., Savostianov A.P., Bakun V.G. // Katal. Promysh. 2016. V. 16. N 1. P. 37-42 (in Russian). DOI: 10.18412/1816-0387-2016-1-37-42.
Yakovenko R.E., Zubkov I.N., Savost’yanov A.P., Soromotin V.N., Krasnyakova T.V., Papeta O.P., Mitchenko S.A. // Kinet. Catal. 2021. V. 62. Р. 172-180. DOI: 10.1134/ S0023158421010122.
Yakovenko R.E., Zubkov I.N., Bakun V.G., Papeta O.P., Savostyanov A.P. // Petrol. Chem. 2022. V. 62. P. 101-111. DOI: 10.1134/S0965544122010157.
Soromotin V.N., Yakovenko R.E., Lavrenov S.A., Telegin D.V., Mitchenko S.A. // Inzh. Vestn. Dona. 2022. Р. 1-11 (in Russian).
Young R.A. The Rietveld Method. Oxford: University Press. 1995. 298 p.
Schanke D. Vada S., Blekkan E.A., Hilmen A., Hoff A., Holmen A. // J. Catal. 1995. V. 156. N 1. Р. 85-95. DOI: 10.1006/jcat.1995.1234.
Xu D., Li W., Duan H., Ge Q., Xu H. // Catal. Lett. 2005. V. 102. Р. 229-235. DOI: 10.1007/s10562-005-5861-7.
Lu T., Yan W., Xu R. // Inorg. Chem. Front. 2019. V. 6. N 8. Р. 1938-1951. DOI: 10.1039/C9QI00574A.
Do Nascimento A.R., De Figueredo G.P., Silva E.M.F., Melo M.A.F., Melo D.M.A., De Souza M.J.B. // Rev. Virtual Quim. 2017. V. 9. N 4. Р. 1570-1582. DOI: 10.21577/ 1984-6835.20170092.
Groen J.C., Moulijn J.A., Pérez-Ramírez J. // J. Mater. Chem. 2006. V. 16. N 22. P. 2121-2131. DOI: 10.1039/ B517510K.
Groen J.C., Peffer L.A., Moulijn J.A., Pérez‐Ramírez J. // Chem.–A Eur. J. 2005. V. 11. N 17. Р. 4983-4994. DOI: 10.1002/chem.200500045.
Breck D. Zeolite molecular sieves. 1976. New York: Wiley. 771 р.
Pelmenschikov A.G., Morosi G., Gamba A. // J. Phys. Chem. 1992. V. 96. N 5. Р. 2241-2246. DOI: 10.1021/ j100184a040.
Olson D.H., Haag W.O., Borghard W.S. // Micropor. Mesopor. Mater. 2000. V. 35. Р. 435-446. DOI: 10.1016/S1387-1811(99)00240-1.
Brazovskaya E.Y., Golubeva O.Y. // Glass Phys. Chem. 2021. V. 47. N 6. Р. 726-730. DOI: 10.1134/S108765962106002X.
Guo P., Yan N., Wang L., Zou X. // Cryst. Growth Des. 2017. V. 17. N 12. Р. 6821-6835. DOI: 10.1021/acs.cgd.7b01410.
Akhmedov V.M., Al‐Khowaiter S.H. // Catal. Rev. 2007. V. 49. N 1. Р. 33-139. DOI: 10.1080/01614940601128427.
Hao W., Zhang W., Guo Z., Ma J., Li R. // Catalysts. 2018. V. 8. N 11. Р. 504. DOI: 10.3390/catal8110504.
Mathieu R., Vieillard P. // Micropor. Mesopor. Mater. 2010. V. 132. N 3. Р. 335-351. DOI: 10.1016/j.micromeso. 2010.03.011.
Cheng K., Kang J., Huang S., You Z., Zhang Q., Ding J., Hua W., Deng J., Wang Y. // ACS Catal. 2012. V. 2. N 3. Р. 441-449. DOI: 10.1021/cs200670j.
Wang F., Zheng Y., Huang Y., Yang X., Xu G., Kang J., Liu C., Zheng Z. // J. Analyt. Appl. Pyrol. 2017. V. 126. Р. 180-187. DOI: 10.1016/j.jaap.2017.06.010.
Murzin D.Y. // Kinet. Catal. 2020. V. 61. Р. 80-92. DOI: 10.1134/S0023158420010073.
Kokuryo S., Miyake K., Uchida Y., Mizusawa A., Kubo T., Nishiyama N. // Mater. Today Sustainability. 2022. V. 17. Р. 100098. DOI: 10.1016/j.mtsust.2021.100098.
Bulavchenko O.A., Vinokurov Z.S. // Catalysts. 2023. V. 13. N 11. Р. 1421. DOI: 10.3390/catal13111421.
Gorshkov A.S., Sineva L.V., Gryaznov K.O., Mitberg E.B., Mordkovich V.Z. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 11. P. 65-70. DOI: 10.6060/ivkkt.20226511.2y.